Aromātai
n^{2}-\frac{13n}{2}+3
Whakaroha
n^{2}-\frac{13n}{2}+3
Tohaina
Kua tāruatia ki te papatopenga
n^{2}+n\left(-\frac{1}{2}\right)-6n-6\left(-\frac{1}{2}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o n-6 ki ia tau o n-\frac{1}{2}.
n^{2}-\frac{13}{2}n-6\left(-\frac{1}{2}\right)
Pahekotia te n\left(-\frac{1}{2}\right) me -6n, ka -\frac{13}{2}n.
n^{2}-\frac{13}{2}n+\frac{-6\left(-1\right)}{2}
Tuhia te -6\left(-\frac{1}{2}\right) hei hautanga kotahi.
n^{2}-\frac{13}{2}n+\frac{6}{2}
Whakareatia te -6 ki te -1, ka 6.
n^{2}-\frac{13}{2}n+3
Whakawehea te 6 ki te 2, kia riro ko 3.
n^{2}+n\left(-\frac{1}{2}\right)-6n-6\left(-\frac{1}{2}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o n-6 ki ia tau o n-\frac{1}{2}.
n^{2}-\frac{13}{2}n-6\left(-\frac{1}{2}\right)
Pahekotia te n\left(-\frac{1}{2}\right) me -6n, ka -\frac{13}{2}n.
n^{2}-\frac{13}{2}n+\frac{-6\left(-1\right)}{2}
Tuhia te -6\left(-\frac{1}{2}\right) hei hautanga kotahi.
n^{2}-\frac{13}{2}n+\frac{6}{2}
Whakareatia te -6 ki te -1, ka 6.
n^{2}-\frac{13}{2}n+3
Whakawehea te 6 ki te 2, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}