Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{2}+n\left(-\frac{1}{2}\right)-6n-6\left(-\frac{1}{2}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o n-6 ki ia tau o n-\frac{1}{2}.
n^{2}-\frac{13}{2}n-6\left(-\frac{1}{2}\right)
Pahekotia te n\left(-\frac{1}{2}\right) me -6n, ka -\frac{13}{2}n.
n^{2}-\frac{13}{2}n+\frac{-6\left(-1\right)}{2}
Tuhia te -6\left(-\frac{1}{2}\right) hei hautanga kotahi.
n^{2}-\frac{13}{2}n+\frac{6}{2}
Whakareatia te -6 ki te -1, ka 6.
n^{2}-\frac{13}{2}n+3
Whakawehea te 6 ki te 2, kia riro ko 3.
n^{2}+n\left(-\frac{1}{2}\right)-6n-6\left(-\frac{1}{2}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o n-6 ki ia tau o n-\frac{1}{2}.
n^{2}-\frac{13}{2}n-6\left(-\frac{1}{2}\right)
Pahekotia te n\left(-\frac{1}{2}\right) me -6n, ka -\frac{13}{2}n.
n^{2}-\frac{13}{2}n+\frac{-6\left(-1\right)}{2}
Tuhia te -6\left(-\frac{1}{2}\right) hei hautanga kotahi.
n^{2}-\frac{13}{2}n+\frac{6}{2}
Whakareatia te -6 ki te -1, ka 6.
n^{2}-\frac{13}{2}n+3
Whakawehea te 6 ki te 2, kia riro ko 3.