Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{2}-\left(2\sqrt{2}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
n^{2}-2^{2}\left(\sqrt{2}\right)^{2}
Whakarohaina te \left(2\sqrt{2}\right)^{2}.
n^{2}-4\left(\sqrt{2}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
n^{2}-4\times 2
Ko te pūrua o \sqrt{2} ko 2.
n^{2}-8
Whakareatia te 4 ki te 2, ka 8.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-\left(2\sqrt{2}\right)^{2})
Whakaarohia te \left(n-2\sqrt{2}\right)\left(n+2\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-2^{2}\left(\sqrt{2}\right)^{2})
Whakarohaina te \left(2\sqrt{2}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-4\left(\sqrt{2}\right)^{2})
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-4\times 2)
Ko te pūrua o \sqrt{2} ko 2.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-8)
Whakareatia te 4 ki te 2, ka 8.
2n^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
2n^{1}
Tango 1 mai i 2.
2n
Mō tētahi kupu t, t^{1}=t.