Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(n^{2}\right)^{4}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
n^{2\times 4}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
n^{8}
Whakareatia 2 ki te 4.
4\left(n^{2}\right)^{4-1}\frac{\mathrm{d}}{\mathrm{d}n}(n^{2})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
4\left(n^{2}\right)^{3}\times 2n^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
8n^{1}\left(n^{2}\right)^{3}
Whakarūnātia.
8n\left(n^{2}\right)^{3}
Mō tētahi kupu t, t^{1}=t.