( n ^ { 2 } + y ^ { 2 } ) d y + 2 n y d x = 0
Whakaoti mō d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&n=\sqrt{x^{2}-y^{2}}-x\text{ or }n=-\sqrt{x^{2}-y^{2}}-x\text{ or }y=0\end{matrix}\right.
Whakaoti mō d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(n=-\sqrt{\left(x-y\right)\left(x+y\right)}-x\text{ and }|y|\leq |x|\text{ and }y\leq -x\text{ and }y\geq x\right)\text{ or }\left(n=-\sqrt{\left(x-y\right)\left(x+y\right)}-x\text{ and }|y|\leq |x|\text{ and }y\leq x\text{ and }y\geq -x\right)\text{ or }\left(n=-x\text{ and }|y|=|x|\right)\text{ or }\left(n=\sqrt{\left(x-y\right)\left(x+y\right)}-x\text{ and }|y|\leq |x|\text{ and }y\leq -x\text{ and }y\geq x\right)\text{ or }\left(n=\sqrt{\left(x-y\right)\left(x+y\right)}-x\text{ and }|y|\leq |x|\text{ and }y\leq x\text{ and }y\geq -x\right)\text{ or }y=0\end{matrix}\right.
Whakaoti mō n (complex solution)
\left\{\begin{matrix}\\n=\sqrt{x^{2}-y^{2}}-x\text{; }n=-\sqrt{x^{2}-y^{2}}-x\text{, }&\text{unconditionally}\\n\in \mathrm{C}\text{, }&y=0\text{ or }d=0\end{matrix}\right.
Whakaoti mō n
\left\{\begin{matrix}n=\sqrt{x^{2}-y^{2}}-x\text{; }n=-\sqrt{x^{2}-y^{2}}-x\text{, }&|y|\leq |x|\\n\in \mathrm{R}\text{, }&y=0\text{ or }d=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(n^{2}d+y^{2}d\right)y+2nydx=0
Whakamahia te āhuatanga tohatoha hei whakarea te n^{2}+y^{2} ki te d.
n^{2}dy+dy^{3}+2nydx=0
Whakamahia te āhuatanga tohatoha hei whakarea te n^{2}d+y^{2}d ki te y.
\left(n^{2}y+y^{3}+2nyx\right)d=0
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\left(2nxy+y^{3}+yn^{2}\right)d=0
He hanga arowhānui tō te whārite.
d=0
Whakawehe 0 ki te n^{2}y+y^{3}+2nyx.
\left(n^{2}d+y^{2}d\right)y+2nydx=0
Whakamahia te āhuatanga tohatoha hei whakarea te n^{2}+y^{2} ki te d.
n^{2}dy+dy^{3}+2nydx=0
Whakamahia te āhuatanga tohatoha hei whakarea te n^{2}d+y^{2}d ki te y.
\left(n^{2}y+y^{3}+2nyx\right)d=0
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\left(2nxy+y^{3}+yn^{2}\right)d=0
He hanga arowhānui tō te whārite.
d=0
Whakawehe 0 ki te n^{2}y+y^{3}+2nyx.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}