Aromātai
4n^{3}+2n^{2}+5n+11
Kimi Pārōnaki e ai ki n
12n^{2}+4n+5
Tohaina
Kua tāruatia ki te papatopenga
5n+9+4n^{3}+2n^{2}+2
Pahekotia te n me 4n, ka 5n.
5n+11+4n^{3}+2n^{2}
Tāpirihia te 9 ki te 2, ka 11.
\frac{\mathrm{d}}{\mathrm{d}n}(5n+9+4n^{3}+2n^{2}+2)
Pahekotia te n me 4n, ka 5n.
\frac{\mathrm{d}}{\mathrm{d}n}(5n+11+4n^{3}+2n^{2})
Tāpirihia te 9 ki te 2, ka 11.
5n^{1-1}+3\times 4n^{3-1}+2\times 2n^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
5n^{0}+3\times 4n^{3-1}+2\times 2n^{2-1}
Tango 1 mai i 1.
5n^{0}+12n^{3-1}+2\times 2n^{2-1}
Whakareatia 3 ki te 4.
5n^{0}+12n^{2}+2\times 2n^{2-1}
Tango 1 mai i 3.
5n^{0}+12n^{2}+4n^{2-1}
Whakareatia 3 ki te 4.
5n^{0}+12n^{2}+4n^{1}
Tango 1 mai i 2.
5n^{0}+12n^{2}+4n
Mō tētahi kupu t, t^{1}=t.
5\times 1+12n^{2}+4n
Mō tētahi kupu t mahue te 0, t^{0}=1.
5+12n^{2}+4n
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}