Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5n+9+4n^{3}+2n^{2}+2
Pahekotia te n me 4n, ka 5n.
5n+11+4n^{3}+2n^{2}
Tāpirihia te 9 ki te 2, ka 11.
\frac{\mathrm{d}}{\mathrm{d}n}(5n+9+4n^{3}+2n^{2}+2)
Pahekotia te n me 4n, ka 5n.
\frac{\mathrm{d}}{\mathrm{d}n}(5n+11+4n^{3}+2n^{2})
Tāpirihia te 9 ki te 2, ka 11.
5n^{1-1}+3\times 4n^{3-1}+2\times 2n^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
5n^{0}+3\times 4n^{3-1}+2\times 2n^{2-1}
Tango 1 mai i 1.
5n^{0}+12n^{3-1}+2\times 2n^{2-1}
Whakareatia 3 ki te 4.
5n^{0}+12n^{2}+2\times 2n^{2-1}
Tango 1 mai i 3.
5n^{0}+12n^{2}+4n^{2-1}
Whakareatia 3 ki te 4.
5n^{0}+12n^{2}+4n^{1}
Tango 1 mai i 2.
5n^{0}+12n^{2}+4n
Mō tētahi kupu t, t^{1}=t.
5\times 1+12n^{2}+4n
Mō tētahi kupu t mahue te 0, t^{0}=1.
5+12n^{2}+4n
Mō tētahi kupu t, t\times 1=t me 1t=t.