Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n+3=2^{2}n^{2}+\left(-1+3\right)\times 2n-5^{1}
Whakarohaina te \left(2n\right)^{2}.
n+3=4n^{2}+\left(-1+3\right)\times 2n-5^{1}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
n+3=4n^{2}+2\times 2n-5^{1}
Tāpirihia te -1 ki te 3, ka 2.
n+3=4n^{2}+4n-5^{1}
Whakareatia te 2 ki te 2, ka 4.
n+3=4n^{2}+4n-5
Tātaihia te 5 mā te pū o 1, kia riro ko 5.
n+3-4n^{2}=4n-5
Tangohia te 4n^{2} mai i ngā taha e rua.
n+3-4n^{2}-4n=-5
Tangohia te 4n mai i ngā taha e rua.
-3n+3-4n^{2}=-5
Pahekotia te n me -4n, ka -3n.
-3n+3-4n^{2}+5=0
Me tāpiri te 5 ki ngā taha e rua.
-3n+8-4n^{2}=0
Tāpirihia te 3 ki te 5, ka 8.
-4n^{2}-3n+8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)\times 8}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, -3 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)\times 8}}{2\left(-4\right)}
Pūrua -3.
n=\frac{-\left(-3\right)±\sqrt{9+16\times 8}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
n=\frac{-\left(-3\right)±\sqrt{9+128}}{2\left(-4\right)}
Whakareatia 16 ki te 8.
n=\frac{-\left(-3\right)±\sqrt{137}}{2\left(-4\right)}
Tāpiri 9 ki te 128.
n=\frac{3±\sqrt{137}}{2\left(-4\right)}
Ko te tauaro o -3 ko 3.
n=\frac{3±\sqrt{137}}{-8}
Whakareatia 2 ki te -4.
n=\frac{\sqrt{137}+3}{-8}
Nā, me whakaoti te whārite n=\frac{3±\sqrt{137}}{-8} ina he tāpiri te ±. Tāpiri 3 ki te \sqrt{137}.
n=\frac{-\sqrt{137}-3}{8}
Whakawehe 3+\sqrt{137} ki te -8.
n=\frac{3-\sqrt{137}}{-8}
Nā, me whakaoti te whārite n=\frac{3±\sqrt{137}}{-8} ina he tango te ±. Tango \sqrt{137} mai i 3.
n=\frac{\sqrt{137}-3}{8}
Whakawehe 3-\sqrt{137} ki te -8.
n=\frac{-\sqrt{137}-3}{8} n=\frac{\sqrt{137}-3}{8}
Kua oti te whārite te whakatau.
n+3=2^{2}n^{2}+\left(-1+3\right)\times 2n-5^{1}
Whakarohaina te \left(2n\right)^{2}.
n+3=4n^{2}+\left(-1+3\right)\times 2n-5^{1}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
n+3=4n^{2}+2\times 2n-5^{1}
Tāpirihia te -1 ki te 3, ka 2.
n+3=4n^{2}+4n-5^{1}
Whakareatia te 2 ki te 2, ka 4.
n+3=4n^{2}+4n-5
Tātaihia te 5 mā te pū o 1, kia riro ko 5.
n+3-4n^{2}=4n-5
Tangohia te 4n^{2} mai i ngā taha e rua.
n+3-4n^{2}-4n=-5
Tangohia te 4n mai i ngā taha e rua.
-3n+3-4n^{2}=-5
Pahekotia te n me -4n, ka -3n.
-3n-4n^{2}=-5-3
Tangohia te 3 mai i ngā taha e rua.
-3n-4n^{2}=-8
Tangohia te 3 i te -5, ka -8.
-4n^{2}-3n=-8
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-4n^{2}-3n}{-4}=-\frac{8}{-4}
Whakawehea ngā taha e rua ki te -4.
n^{2}+\left(-\frac{3}{-4}\right)n=-\frac{8}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
n^{2}+\frac{3}{4}n=-\frac{8}{-4}
Whakawehe -3 ki te -4.
n^{2}+\frac{3}{4}n=2
Whakawehe -8 ki te -4.
n^{2}+\frac{3}{4}n+\left(\frac{3}{8}\right)^{2}=2+\left(\frac{3}{8}\right)^{2}
Whakawehea te \frac{3}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{8}. Nā, tāpiria te pūrua o te \frac{3}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+\frac{3}{4}n+\frac{9}{64}=2+\frac{9}{64}
Pūruatia \frac{3}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}+\frac{3}{4}n+\frac{9}{64}=\frac{137}{64}
Tāpiri 2 ki te \frac{9}{64}.
\left(n+\frac{3}{8}\right)^{2}=\frac{137}{64}
Tauwehea n^{2}+\frac{3}{4}n+\frac{9}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{3}{8}\right)^{2}}=\sqrt{\frac{137}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+\frac{3}{8}=\frac{\sqrt{137}}{8} n+\frac{3}{8}=-\frac{\sqrt{137}}{8}
Whakarūnātia.
n=\frac{\sqrt{137}-3}{8} n=\frac{-\sqrt{137}-3}{8}
Me tango \frac{3}{8} mai i ngā taha e rua o te whārite.