Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n+1+2n-1-\left(n+2n-3\right)^{3}
Tātaihia te 1 mā te pū o 3, kia riro ko 1.
3n+1-1-\left(n+2n-3\right)^{3}
Pahekotia te n me 2n, ka 3n.
3n-\left(n+2n-3\right)^{3}
Tangohia te 1 i te 1, ka 0.
3n-\left(3n-3\right)^{3}
Pahekotia te n me 2n, ka 3n.
3n-\left(27n^{3}-81n^{2}+81n-27\right)
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(3n-3\right)^{3}.
3n-27n^{3}+81n^{2}-81n+27
Hei kimi i te tauaro o 27n^{3}-81n^{2}+81n-27, kimihia te tauaro o ia taurangi.
-78n-27n^{3}+81n^{2}+27
Pahekotia te 3n me -81n, ka -78n.
n+1+2n-1-\left(n+2n-3\right)^{3}
Tātaihia te 1 mā te pū o 3, kia riro ko 1.
3n+1-1-\left(n+2n-3\right)^{3}
Pahekotia te n me 2n, ka 3n.
3n-\left(n+2n-3\right)^{3}
Tangohia te 1 i te 1, ka 0.
3n-\left(3n-3\right)^{3}
Pahekotia te n me 2n, ka 3n.
3n-\left(27n^{3}-81n^{2}+81n-27\right)
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(3n-3\right)^{3}.
3n-27n^{3}+81n^{2}-81n+27
Hei kimi i te tauaro o 27n^{3}-81n^{2}+81n-27, kimihia te tauaro o ia taurangi.
-78n-27n^{3}+81n^{2}+27
Pahekotia te 3n me -81n, ka -78n.