Aromātai
27-78n+81n^{2}-27n^{3}
Whakaroha
27-78n+81n^{2}-27n^{3}
Tohaina
Kua tāruatia ki te papatopenga
n+1+2n-1-\left(n+2n-3\right)^{3}
Tātaihia te 1 mā te pū o 3, kia riro ko 1.
3n+1-1-\left(n+2n-3\right)^{3}
Pahekotia te n me 2n, ka 3n.
3n-\left(n+2n-3\right)^{3}
Tangohia te 1 i te 1, ka 0.
3n-\left(3n-3\right)^{3}
Pahekotia te n me 2n, ka 3n.
3n-\left(27n^{3}-81n^{2}+81n-27\right)
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(3n-3\right)^{3}.
3n-27n^{3}+81n^{2}-81n+27
Hei kimi i te tauaro o 27n^{3}-81n^{2}+81n-27, kimihia te tauaro o ia taurangi.
-78n-27n^{3}+81n^{2}+27
Pahekotia te 3n me -81n, ka -78n.
n+1+2n-1-\left(n+2n-3\right)^{3}
Tātaihia te 1 mā te pū o 3, kia riro ko 1.
3n+1-1-\left(n+2n-3\right)^{3}
Pahekotia te n me 2n, ka 3n.
3n-\left(n+2n-3\right)^{3}
Tangohia te 1 i te 1, ka 0.
3n-\left(3n-3\right)^{3}
Pahekotia te n me 2n, ka 3n.
3n-\left(27n^{3}-81n^{2}+81n-27\right)
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(3n-3\right)^{3}.
3n-27n^{3}+81n^{2}-81n+27
Hei kimi i te tauaro o 27n^{3}-81n^{2}+81n-27, kimihia te tauaro o ia taurangi.
-78n-27n^{3}+81n^{2}+27
Pahekotia te 3n me -81n, ka -78n.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}