Aromātai
0
Tauwehe
0
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( m - 2 ) ^ { 3 } - ( m + 1 ) ^ { 3 } - 9 ( m - m ^ { 2 } - 1 )
Tohaina
Kua tāruatia ki te papatopenga
m^{3}-6m^{2}+12m-8-\left(m+1\right)^{3}-9\left(m-m^{2}-1\right)
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(m-2\right)^{3}.
m^{3}-6m^{2}+12m-8-\left(m^{3}+3m^{2}+3m+1\right)-9\left(m-m^{2}-1\right)
Whakamahia te ture huarua \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} hei whakaroha \left(m+1\right)^{3}.
m^{3}-6m^{2}+12m-8-m^{3}-3m^{2}-3m-1-9\left(m-m^{2}-1\right)
Hei kimi i te tauaro o m^{3}+3m^{2}+3m+1, kimihia te tauaro o ia taurangi.
-6m^{2}+12m-8-3m^{2}-3m-1-9\left(m-m^{2}-1\right)
Pahekotia te m^{3} me -m^{3}, ka 0.
-9m^{2}+12m-8-3m-1-9\left(m-m^{2}-1\right)
Pahekotia te -6m^{2} me -3m^{2}, ka -9m^{2}.
-9m^{2}+9m-8-1-9\left(m-m^{2}-1\right)
Pahekotia te 12m me -3m, ka 9m.
-9m^{2}+9m-9-9\left(m-m^{2}-1\right)
Tangohia te 1 i te -8, ka -9.
-9m^{2}+9m-9-9m+9m^{2}+9
Whakamahia te āhuatanga tohatoha hei whakarea te -9 ki te m-m^{2}-1.
-9m^{2}-9+9m^{2}+9
Pahekotia te 9m me -9m, ka 0.
-9+9
Pahekotia te -9m^{2} me 9m^{2}, ka 0.
0
Tāpirihia te -9 ki te 9, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}