Whakaoti mō m
m=-\frac{3x-17}{x-4}
x\neq 4
Whakaoti mō x
x=\frac{4m+17}{m+3}
m\neq -3
Graph
Tohaina
Kua tāruatia ki te papatopenga
m\left(x-4\right)+4\left(x+1\right)=4\left(x+7\right)-\left(x-5\right)-2\left(x+6\right)
Me whakarea ngā taha e rua o te whārite ki te 8, arā, te tauraro pātahi he tino iti rawa te kitea o 8,2,4.
mx-4m+4\left(x+1\right)=4\left(x+7\right)-\left(x-5\right)-2\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te m ki te x-4.
mx-4m+4x+4=4\left(x+7\right)-\left(x-5\right)-2\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+1.
mx-4m+4x+4=4x+28-\left(x-5\right)-2\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+7.
mx-4m+4x+4=4x+28-x+5-2\left(x+6\right)
Hei kimi i te tauaro o x-5, kimihia te tauaro o ia taurangi.
mx-4m+4x+4=3x+28+5-2\left(x+6\right)
Pahekotia te 4x me -x, ka 3x.
mx-4m+4x+4=3x+33-2\left(x+6\right)
Tāpirihia te 28 ki te 5, ka 33.
mx-4m+4x+4=3x+33-2x-12
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+6.
mx-4m+4x+4=x+33-12
Pahekotia te 3x me -2x, ka x.
mx-4m+4x+4=x+21
Tangohia te 12 i te 33, ka 21.
mx-4m+4=x+21-4x
Tangohia te 4x mai i ngā taha e rua.
mx-4m+4=-3x+21
Pahekotia te x me -4x, ka -3x.
mx-4m=-3x+21-4
Tangohia te 4 mai i ngā taha e rua.
mx-4m=-3x+17
Tangohia te 4 i te 21, ka 17.
\left(x-4\right)m=-3x+17
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(x-4\right)m=17-3x
He hanga arowhānui tō te whārite.
\frac{\left(x-4\right)m}{x-4}=\frac{17-3x}{x-4}
Whakawehea ngā taha e rua ki te x-4.
m=\frac{17-3x}{x-4}
Mā te whakawehe ki te x-4 ka wetekia te whakareanga ki te x-4.
m\left(x-4\right)+4\left(x+1\right)=4\left(x+7\right)-\left(x-5\right)-2\left(x+6\right)
Me whakarea ngā taha e rua o te whārite ki te 8, arā, te tauraro pātahi he tino iti rawa te kitea o 8,2,4.
mx-4m+4\left(x+1\right)=4\left(x+7\right)-\left(x-5\right)-2\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te m ki te x-4.
mx-4m+4x+4=4\left(x+7\right)-\left(x-5\right)-2\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+1.
mx-4m+4x+4=4x+28-\left(x-5\right)-2\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+7.
mx-4m+4x+4=4x+28-x+5-2\left(x+6\right)
Hei kimi i te tauaro o x-5, kimihia te tauaro o ia taurangi.
mx-4m+4x+4=3x+28+5-2\left(x+6\right)
Pahekotia te 4x me -x, ka 3x.
mx-4m+4x+4=3x+33-2\left(x+6\right)
Tāpirihia te 28 ki te 5, ka 33.
mx-4m+4x+4=3x+33-2x-12
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+6.
mx-4m+4x+4=x+33-12
Pahekotia te 3x me -2x, ka x.
mx-4m+4x+4=x+21
Tangohia te 12 i te 33, ka 21.
mx-4m+4x+4-x=21
Tangohia te x mai i ngā taha e rua.
mx-4m+3x+4=21
Pahekotia te 4x me -x, ka 3x.
mx+3x+4=21+4m
Me tāpiri te 4m ki ngā taha e rua.
mx+3x=21+4m-4
Tangohia te 4 mai i ngā taha e rua.
mx+3x=17+4m
Tangohia te 4 i te 21, ka 17.
\left(m+3\right)x=17+4m
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(m+3\right)x=4m+17
He hanga arowhānui tō te whārite.
\frac{\left(m+3\right)x}{m+3}=\frac{4m+17}{m+3}
Whakawehea ngā taha e rua ki te m+3.
x=\frac{4m+17}{m+3}
Mā te whakawehe ki te m+3 ka wetekia te whakareanga ki te m+3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}