Kimi Pārōnaki e ai ki m
-\frac{5}{6\left(m+7\right)^{\frac{11}{6}}}
Aromātai
\frac{1}{\left(m+7\right)^{\frac{5}{6}}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\mathrm{d}}{\mathrm{d}m}(\left(m+7\right)^{-\frac{5}{6}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -\frac{1}{6} me te -\frac{2}{3} kia riro ai te -\frac{5}{6}.
-\frac{5}{6}\left(m^{1}+7\right)^{-\frac{5}{6}-1}\frac{\mathrm{d}}{\mathrm{d}m}(m^{1}+7)
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{5}{6}\left(m^{1}+7\right)^{-\frac{11}{6}}m^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-\frac{5}{6}m^{0}\left(m^{1}+7\right)^{-\frac{11}{6}}
Whakarūnātia.
-\frac{5}{6}m^{0}\left(m+7\right)^{-\frac{11}{6}}
Mō tētahi kupu t, t^{1}=t.
-\frac{5}{6}\left(m+7\right)^{-\frac{11}{6}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}