Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki m
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}m}(\left(m+7\right)^{-\frac{5}{6}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -\frac{1}{6} me te -\frac{2}{3} kia riro ai te -\frac{5}{6}.
-\frac{5}{6}\left(m^{1}+7\right)^{-\frac{5}{6}-1}\frac{\mathrm{d}}{\mathrm{d}m}(m^{1}+7)
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{5}{6}\left(m^{1}+7\right)^{-\frac{11}{6}}m^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-\frac{5}{6}m^{0}\left(m^{1}+7\right)^{-\frac{11}{6}}
Whakarūnātia.
-\frac{5}{6}m^{0}\left(m+7\right)^{-\frac{11}{6}}
Mō tētahi kupu t, t^{1}=t.
-\frac{5}{6}\left(m+7\right)^{-\frac{11}{6}}
Mō tētahi kupu t mahue te 0, t^{0}=1.