Whakaoti mō x (complex solution)
\left\{\begin{matrix}\\x=m-5\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&m=-5\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}\\x=m-5\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&m=-5\end{matrix}\right.
Whakaoti mō m
m=-5
m=x+5
Graph
Tohaina
Kua tāruatia ki te papatopenga
mx+5x-m^{2}+25=0
Whakamahia te āhuatanga tohatoha hei whakarea te m+5 ki te x.
mx+5x+25=m^{2}
Me tāpiri te m^{2} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
mx+5x=m^{2}-25
Tangohia te 25 mai i ngā taha e rua.
\left(m+5\right)x=m^{2}-25
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(m+5\right)x}{m+5}=\frac{m^{2}-25}{m+5}
Whakawehea ngā taha e rua ki te m+5.
x=\frac{m^{2}-25}{m+5}
Mā te whakawehe ki te m+5 ka wetekia te whakareanga ki te m+5.
x=m-5
Whakawehe m^{2}-25 ki te m+5.
mx+5x-m^{2}+25=0
Whakamahia te āhuatanga tohatoha hei whakarea te m+5 ki te x.
mx+5x+25=m^{2}
Me tāpiri te m^{2} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
mx+5x=m^{2}-25
Tangohia te 25 mai i ngā taha e rua.
\left(m+5\right)x=m^{2}-25
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(m+5\right)x}{m+5}=\frac{m^{2}-25}{m+5}
Whakawehea ngā taha e rua ki te 5+m.
x=\frac{m^{2}-25}{m+5}
Mā te whakawehe ki te 5+m ka wetekia te whakareanga ki te 5+m.
x=m-5
Whakawehe m^{2}-25 ki te 5+m.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}