Tīpoka ki ngā ihirangi matua
Whakaoti mō k
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

kx^{2}-x^{2}+3kx+2k-3=0
Whakamahia te āhuatanga tohatoha hei whakarea te k-1 ki te x^{2}.
kx^{2}+3kx+2k-3=x^{2}
Me tāpiri te x^{2} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
kx^{2}+3kx+2k=x^{2}+3
Me tāpiri te 3 ki ngā taha e rua.
\left(x^{2}+3x+2\right)k=x^{2}+3
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\frac{\left(x^{2}+3x+2\right)k}{x^{2}+3x+2}=\frac{x^{2}+3}{x^{2}+3x+2}
Whakawehea ngā taha e rua ki te x^{2}+3x+2.
k=\frac{x^{2}+3}{x^{2}+3x+2}
Mā te whakawehe ki te x^{2}+3x+2 ka wetekia te whakareanga ki te x^{2}+3x+2.
k=\frac{x^{2}+3}{\left(x+1\right)\left(x+2\right)}
Whakawehe x^{2}+3 ki te x^{2}+3x+2.