Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō k
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(k^{2}-1\right)x=2\left(k-1\right)\left(k+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te k-1 ki te k+1 ka whakakotahi i ngā kupu rite.
k^{2}x-x=2\left(k-1\right)\left(k+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te k^{2}-1 ki te x.
k^{2}x-x=\left(2k-2\right)\left(k+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te k-1.
k^{2}x-x=2k^{2}+2k-4
Whakamahia te āhuatanga tuaritanga hei whakarea te 2k-2 ki te k+2 ka whakakotahi i ngā kupu rite.
\left(k^{2}-1\right)x=2k^{2}+2k-4
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(k^{2}-1\right)x}{k^{2}-1}=\frac{2\left(k-1\right)\left(k+2\right)}{k^{2}-1}
Whakawehea ngā taha e rua ki te k^{2}-1.
x=\frac{2\left(k-1\right)\left(k+2\right)}{k^{2}-1}
Mā te whakawehe ki te k^{2}-1 ka wetekia te whakareanga ki te k^{2}-1.
x=\frac{2\left(k+2\right)}{k+1}
Whakawehe 2\left(-1+k\right)\left(2+k\right) ki te k^{2}-1.