Whakaoti mō x
\left\{\begin{matrix}x=\frac{2\left(k+2\right)}{k+1}\text{, }&k\neq -1\\x\in \mathrm{R}\text{, }&k=1\end{matrix}\right.
Whakaoti mō k
\left\{\begin{matrix}\\k=1\text{, }&\text{unconditionally}\\k=-\frac{x-4}{x-2}\text{, }&x\neq 2\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(k^{2}-1\right)x=2\left(k-1\right)\left(k+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te k-1 ki te k+1 ka whakakotahi i ngā kupu rite.
k^{2}x-x=2\left(k-1\right)\left(k+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te k^{2}-1 ki te x.
k^{2}x-x=\left(2k-2\right)\left(k+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te k-1.
k^{2}x-x=2k^{2}+2k-4
Whakamahia te āhuatanga tuaritanga hei whakarea te 2k-2 ki te k+2 ka whakakotahi i ngā kupu rite.
\left(k^{2}-1\right)x=2k^{2}+2k-4
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(k^{2}-1\right)x}{k^{2}-1}=\frac{2\left(k-1\right)\left(k+2\right)}{k^{2}-1}
Whakawehea ngā taha e rua ki te k^{2}-1.
x=\frac{2\left(k-1\right)\left(k+2\right)}{k^{2}-1}
Mā te whakawehe ki te k^{2}-1 ka wetekia te whakareanga ki te k^{2}-1.
x=\frac{2\left(k+2\right)}{k+1}
Whakawehe 2\left(-1+k\right)\left(2+k\right) ki te k^{2}-1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}