Whakaoti mō m
\left\{\begin{matrix}\\m=i\gamma _{μ}∂^{\mu }\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&\psi =0\end{matrix}\right.
Whakaoti mō γ_μ
\left\{\begin{matrix}\gamma _{μ}=-\frac{im}{∂^{\mu }}\text{, }&\mu =0\text{ or }∂\neq 0\\\gamma _{μ}\in \mathrm{C}\text{, }&\psi =0\text{ or }\left(m=0\text{ and }∂=0\text{ and }\mu \neq 0\right)\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
i\gamma _{μ}∂^{\mu }\psi -m\psi =0
Whakamahia te āhuatanga tohatoha hei whakarea te i\gamma _{μ}∂^{\mu }-m ki te \psi .
-m\psi =-i\gamma _{μ}∂^{\mu }\psi
Tangohia te i\gamma _{μ}∂^{\mu }\psi mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(-\psi \right)m=-i\gamma _{μ}\psi ∂^{\mu }
He hanga arowhānui tō te whārite.
\frac{\left(-\psi \right)m}{-\psi }=-\frac{i\gamma _{μ}\psi ∂^{\mu }}{-\psi }
Whakawehea ngā taha e rua ki te -\psi .
m=-\frac{i\gamma _{μ}\psi ∂^{\mu }}{-\psi }
Mā te whakawehe ki te -\psi ka wetekia te whakareanga ki te -\psi .
m=i\gamma _{μ}∂^{\mu }
Whakawehe -i\gamma _{μ}∂^{\mu }\psi ki te -\psi .
i\gamma _{μ}∂^{\mu }\psi -m\psi =0
Whakamahia te āhuatanga tohatoha hei whakarea te i\gamma _{μ}∂^{\mu }-m ki te \psi .
i\gamma _{μ}∂^{\mu }\psi =m\psi
Me tāpiri te m\psi ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
i\psi ∂^{\mu }\gamma _{μ}=m\psi
He hanga arowhānui tō te whārite.
\frac{i\psi ∂^{\mu }\gamma _{μ}}{i\psi ∂^{\mu }}=\frac{m\psi }{i\psi ∂^{\mu }}
Whakawehea ngā taha e rua ki te i∂^{\mu }\psi .
\gamma _{μ}=\frac{m\psi }{i\psi ∂^{\mu }}
Mā te whakawehe ki te i∂^{\mu }\psi ka wetekia te whakareanga ki te i∂^{\mu }\psi .
\gamma _{μ}=-\frac{im}{∂^{\mu }}
Whakawehe m\psi ki te i∂^{\mu }\psi .
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}