Whakaoti mō h
h = \frac{134290}{109} = 1232\frac{2}{109} \approx 1232.018348624
Tohaina
Kua tāruatia ki te papatopenga
\left(h-352\right)\times 981=\frac{1}{2}\times 1314^{2}
Whakareatia te 176 ki te 2, ka 352.
981h-345312=\frac{1}{2}\times 1314^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te h-352 ki te 981.
981h-345312=\frac{1}{2}\times 1726596
Tātaihia te 1314 mā te pū o 2, kia riro ko 1726596.
981h-345312=\frac{1726596}{2}
Whakareatia te \frac{1}{2} ki te 1726596, ka \frac{1726596}{2}.
981h-345312=863298
Whakawehea te 1726596 ki te 2, kia riro ko 863298.
981h=863298+345312
Me tāpiri te 345312 ki ngā taha e rua.
981h=1208610
Tāpirihia te 863298 ki te 345312, ka 1208610.
h=\frac{1208610}{981}
Whakawehea ngā taha e rua ki te 981.
h=\frac{134290}{109}
Whakahekea te hautanga \frac{1208610}{981} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}