Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt[5]{c^{5}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
c^{5\times \frac{1}{5}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
c
Whakareatia 5 ki te \frac{1}{5}.
\frac{1}{5}\left(c^{5}\right)^{\frac{1}{5}-1}\frac{\mathrm{d}}{\mathrm{d}c}(c^{5})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{1}{5}\left(c^{5}\right)^{-\frac{4}{5}}\times 5c^{5-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
c^{4}\left(c^{5}\right)^{-\frac{4}{5}}
Whakarūnātia.