Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}-2ax+x^{2}+3^{2}=x^{2}
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-x\right)^{2}.
a^{2}-2ax+x^{2}+9=x^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
a^{2}-2ax+x^{2}+9-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
a^{2}-2ax+9=0
Pahekotia te x^{2} me -x^{2}, ka 0.
-2ax+9=-a^{2}
Tangohia te a^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2ax=-a^{2}-9
Tangohia te 9 mai i ngā taha e rua.
\left(-2a\right)x=-a^{2}-9
He hanga arowhānui tō te whārite.
\frac{\left(-2a\right)x}{-2a}=\frac{-a^{2}-9}{-2a}
Whakawehea ngā taha e rua ki te -2a.
x=\frac{-a^{2}-9}{-2a}
Mā te whakawehe ki te -2a ka wetekia te whakareanga ki te -2a.
x=\frac{a}{2}+\frac{9}{2a}
Whakawehe -a^{2}-9 ki te -2a.