Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō b (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image
Whakaoti mō b
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

ax^{2}-bx^{2}=2bx+4a
Whakamahia te āhuatanga tohatoha hei whakarea te a-b ki te x^{2}.
ax^{2}-bx^{2}-4a=2bx
Tangohia te 4a mai i ngā taha e rua.
ax^{2}-4a=2bx+bx^{2}
Me tāpiri te bx^{2} ki ngā taha e rua.
\left(x^{2}-4\right)a=2bx+bx^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(x^{2}-4\right)a=bx^{2}+2bx
He hanga arowhānui tō te whārite.
\frac{\left(x^{2}-4\right)a}{x^{2}-4}=\frac{bx\left(x+2\right)}{x^{2}-4}
Whakawehea ngā taha e rua ki te x^{2}-4.
a=\frac{bx\left(x+2\right)}{x^{2}-4}
Mā te whakawehe ki te x^{2}-4 ka wetekia te whakareanga ki te x^{2}-4.
a=\frac{bx}{x-2}
Whakawehe bx\left(2+x\right) ki te x^{2}-4.
ax^{2}-bx^{2}=2bx+4a
Whakamahia te āhuatanga tohatoha hei whakarea te a-b ki te x^{2}.
ax^{2}-bx^{2}-2bx=4a
Tangohia te 2bx mai i ngā taha e rua.
-bx^{2}-2bx=4a-ax^{2}
Tangohia te ax^{2} mai i ngā taha e rua.
-bx^{2}-2bx=-ax^{2}+4a
Whakaraupapatia anō ngā kīanga tau.
\left(-x^{2}-2x\right)b=-ax^{2}+4a
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(-x^{2}-2x\right)b=4a-ax^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-x^{2}-2x\right)b}{-x^{2}-2x}=-\frac{a\left(x-2\right)\left(x+2\right)}{-x^{2}-2x}
Whakawehea ngā taha e rua ki te -x^{2}-2x.
b=-\frac{a\left(x-2\right)\left(x+2\right)}{-x^{2}-2x}
Mā te whakawehe ki te -x^{2}-2x ka wetekia te whakareanga ki te -x^{2}-2x.
b=\frac{a\left(x-2\right)}{x}
Whakawehe -a\left(2+x\right)\left(-2+x\right) ki te -x^{2}-2x.
ax^{2}-bx^{2}=2bx+4a
Whakamahia te āhuatanga tohatoha hei whakarea te a-b ki te x^{2}.
ax^{2}-bx^{2}-4a=2bx
Tangohia te 4a mai i ngā taha e rua.
ax^{2}-4a=2bx+bx^{2}
Me tāpiri te bx^{2} ki ngā taha e rua.
\left(x^{2}-4\right)a=2bx+bx^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(x^{2}-4\right)a=bx^{2}+2bx
He hanga arowhānui tō te whārite.
\frac{\left(x^{2}-4\right)a}{x^{2}-4}=\frac{bx\left(x+2\right)}{x^{2}-4}
Whakawehea ngā taha e rua ki te x^{2}-4.
a=\frac{bx\left(x+2\right)}{x^{2}-4}
Mā te whakawehe ki te x^{2}-4 ka wetekia te whakareanga ki te x^{2}-4.
a=\frac{bx}{x-2}
Whakawehe bx\left(2+x\right) ki te x^{2}-4.
ax^{2}-bx^{2}=2bx+4a
Whakamahia te āhuatanga tohatoha hei whakarea te a-b ki te x^{2}.
ax^{2}-bx^{2}-2bx=4a
Tangohia te 2bx mai i ngā taha e rua.
-bx^{2}-2bx=4a-ax^{2}
Tangohia te ax^{2} mai i ngā taha e rua.
-bx^{2}-2bx=-ax^{2}+4a
Whakaraupapatia anō ngā kīanga tau.
\left(-x^{2}-2x\right)b=-ax^{2}+4a
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(-x^{2}-2x\right)b=4a-ax^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-x^{2}-2x\right)b}{-x^{2}-2x}=-\frac{a\left(x-2\right)\left(x+2\right)}{-x^{2}-2x}
Whakawehea ngā taha e rua ki te -x^{2}-2x.
b=-\frac{a\left(x-2\right)\left(x+2\right)}{-x^{2}-2x}
Mā te whakawehe ki te -x^{2}-2x ka wetekia te whakareanga ki te -x^{2}-2x.
b=\frac{a\left(x-2\right)}{x}
Whakawehe -a\left(2+x\right)\left(-2+x\right) ki te -x^{2}-2x.