Whakaoti mō a (complex solution)
\left\{\begin{matrix}a=-\frac{bx}{2-x}\text{, }&x\neq 2\\a\in \mathrm{C}\text{, }&x=-2\text{ or }\left(b=0\text{ and }x=2\right)\end{matrix}\right.
Whakaoti mō b (complex solution)
\left\{\begin{matrix}b=\frac{a\left(x-2\right)}{x}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&x=-2\text{ or }\left(a=0\text{ and }x=0\right)\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}a=-\frac{bx}{2-x}\text{, }&x\neq 2\\a\in \mathrm{R}\text{, }&x=-2\text{ or }\left(b=0\text{ and }x=2\right)\end{matrix}\right.
Whakaoti mō b
\left\{\begin{matrix}b=\frac{a\left(x-2\right)}{x}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&x=-2\text{ or }\left(a=0\text{ and }x=0\right)\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
ax^{2}-bx^{2}=2bx+4a
Whakamahia te āhuatanga tohatoha hei whakarea te a-b ki te x^{2}.
ax^{2}-bx^{2}-4a=2bx
Tangohia te 4a mai i ngā taha e rua.
ax^{2}-4a=2bx+bx^{2}
Me tāpiri te bx^{2} ki ngā taha e rua.
\left(x^{2}-4\right)a=2bx+bx^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(x^{2}-4\right)a=bx^{2}+2bx
He hanga arowhānui tō te whārite.
\frac{\left(x^{2}-4\right)a}{x^{2}-4}=\frac{bx\left(x+2\right)}{x^{2}-4}
Whakawehea ngā taha e rua ki te x^{2}-4.
a=\frac{bx\left(x+2\right)}{x^{2}-4}
Mā te whakawehe ki te x^{2}-4 ka wetekia te whakareanga ki te x^{2}-4.
a=\frac{bx}{x-2}
Whakawehe bx\left(2+x\right) ki te x^{2}-4.
ax^{2}-bx^{2}=2bx+4a
Whakamahia te āhuatanga tohatoha hei whakarea te a-b ki te x^{2}.
ax^{2}-bx^{2}-2bx=4a
Tangohia te 2bx mai i ngā taha e rua.
-bx^{2}-2bx=4a-ax^{2}
Tangohia te ax^{2} mai i ngā taha e rua.
-bx^{2}-2bx=-ax^{2}+4a
Whakaraupapatia anō ngā kīanga tau.
\left(-x^{2}-2x\right)b=-ax^{2}+4a
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(-x^{2}-2x\right)b=4a-ax^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-x^{2}-2x\right)b}{-x^{2}-2x}=-\frac{a\left(x-2\right)\left(x+2\right)}{-x^{2}-2x}
Whakawehea ngā taha e rua ki te -x^{2}-2x.
b=-\frac{a\left(x-2\right)\left(x+2\right)}{-x^{2}-2x}
Mā te whakawehe ki te -x^{2}-2x ka wetekia te whakareanga ki te -x^{2}-2x.
b=\frac{a\left(x-2\right)}{x}
Whakawehe -a\left(2+x\right)\left(-2+x\right) ki te -x^{2}-2x.
ax^{2}-bx^{2}=2bx+4a
Whakamahia te āhuatanga tohatoha hei whakarea te a-b ki te x^{2}.
ax^{2}-bx^{2}-4a=2bx
Tangohia te 4a mai i ngā taha e rua.
ax^{2}-4a=2bx+bx^{2}
Me tāpiri te bx^{2} ki ngā taha e rua.
\left(x^{2}-4\right)a=2bx+bx^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(x^{2}-4\right)a=bx^{2}+2bx
He hanga arowhānui tō te whārite.
\frac{\left(x^{2}-4\right)a}{x^{2}-4}=\frac{bx\left(x+2\right)}{x^{2}-4}
Whakawehea ngā taha e rua ki te x^{2}-4.
a=\frac{bx\left(x+2\right)}{x^{2}-4}
Mā te whakawehe ki te x^{2}-4 ka wetekia te whakareanga ki te x^{2}-4.
a=\frac{bx}{x-2}
Whakawehe bx\left(2+x\right) ki te x^{2}-4.
ax^{2}-bx^{2}=2bx+4a
Whakamahia te āhuatanga tohatoha hei whakarea te a-b ki te x^{2}.
ax^{2}-bx^{2}-2bx=4a
Tangohia te 2bx mai i ngā taha e rua.
-bx^{2}-2bx=4a-ax^{2}
Tangohia te ax^{2} mai i ngā taha e rua.
-bx^{2}-2bx=-ax^{2}+4a
Whakaraupapatia anō ngā kīanga tau.
\left(-x^{2}-2x\right)b=-ax^{2}+4a
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(-x^{2}-2x\right)b=4a-ax^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-x^{2}-2x\right)b}{-x^{2}-2x}=-\frac{a\left(x-2\right)\left(x+2\right)}{-x^{2}-2x}
Whakawehea ngā taha e rua ki te -x^{2}-2x.
b=-\frac{a\left(x-2\right)\left(x+2\right)}{-x^{2}-2x}
Mā te whakawehe ki te -x^{2}-2x ka wetekia te whakareanga ki te -x^{2}-2x.
b=\frac{a\left(x-2\right)}{x}
Whakawehe -a\left(2+x\right)\left(-2+x\right) ki te -x^{2}-2x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}