Aromātai
a
Kimi Pārōnaki e ai ki a
1
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia a-b ki te \frac{a+b}{a+b}.
\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a}
Tā te mea he rite te tauraro o \frac{\left(a-b\right)\left(a+b\right)}{a+b} me \frac{b^{2}}{a+b}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a}
Mahia ngā whakarea i roto o \left(a-b\right)\left(a+b\right)+b^{2}.
\frac{a^{2}}{a+b}\times \frac{a+b}{a}
Whakakotahitia ngā kupu rite i a^{2}+ab-ba-b^{2}+b^{2}.
\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a}
Me whakarea te \frac{a^{2}}{a+b} ki te \frac{a+b}{a} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
a
Me whakakore tahi te a\left(a+b\right) i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia a-b ki te \frac{a+b}{a+b}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a})
Tā te mea he rite te tauraro o \frac{\left(a-b\right)\left(a+b\right)}{a+b} me \frac{b^{2}}{a+b}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a})
Mahia ngā whakarea i roto o \left(a-b\right)\left(a+b\right)+b^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}}{a+b}\times \frac{a+b}{a})
Whakakotahitia ngā kupu rite i a^{2}+ab-ba-b^{2}+b^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a})
Me whakarea te \frac{a^{2}}{a+b} ki te \frac{a+b}{a} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Me whakakore tahi te a\left(a+b\right) i te taurunga me te tauraro.
a^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
a^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}