Tīpoka ki ngā ihirangi matua
Whakaoti mō R (complex solution)
Tick mark Image
Whakaoti mō R
Tick mark Image
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}-2aR+R^{2}+3a^{2}=R^{2}
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-R\right)^{2}.
4a^{2}-2aR+R^{2}=R^{2}
Pahekotia te a^{2} me 3a^{2}, ka 4a^{2}.
4a^{2}-2aR+R^{2}-R^{2}=0
Tangohia te R^{2} mai i ngā taha e rua.
4a^{2}-2aR=0
Pahekotia te R^{2} me -R^{2}, ka 0.
-2aR=-4a^{2}
Tangohia te 4a^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(-2a\right)R=-4a^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-2a\right)R}{-2a}=-\frac{4a^{2}}{-2a}
Whakawehea ngā taha e rua ki te -2a.
R=-\frac{4a^{2}}{-2a}
Mā te whakawehe ki te -2a ka wetekia te whakareanga ki te -2a.
R=2a
Whakawehe -4a^{2} ki te -2a.
a^{2}-2aR+R^{2}+3a^{2}=R^{2}
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-R\right)^{2}.
4a^{2}-2aR+R^{2}=R^{2}
Pahekotia te a^{2} me 3a^{2}, ka 4a^{2}.
4a^{2}-2aR+R^{2}-R^{2}=0
Tangohia te R^{2} mai i ngā taha e rua.
4a^{2}-2aR=0
Pahekotia te R^{2} me -R^{2}, ka 0.
-2aR=-4a^{2}
Tangohia te 4a^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(-2a\right)R=-4a^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-2a\right)R}{-2a}=-\frac{4a^{2}}{-2a}
Whakawehea ngā taha e rua ki te -2a.
R=-\frac{4a^{2}}{-2a}
Mā te whakawehe ki te -2a ka wetekia te whakareanga ki te -2a.
R=2a
Whakawehe -4a^{2} ki te -2a.