Whakaoti mō b
b=\frac{ia}{3}+\left(1-3i\right)
Whakaoti mō a
a=9+3i-3ib
Tohaina
Kua tāruatia ki te papatopenga
a-2+3ib+i=7+4i
Whakamahia te āhuatanga tohatoha hei whakarea te 3b+1 ki te i.
-2+3ib+i=7+4i-a
Tangohia te a mai i ngā taha e rua.
3ib+i=7+4i-a+2
Me tāpiri te 2 ki ngā taha e rua.
3ib+i=-a+9+4i
Mahia ngā tāpiri i roto o 7+4i+2.
3ib=-a+9+4i-i
Tangohia te i mai i ngā taha e rua.
3ib=-a+9+3i
Mahia ngā tāpiri i roto o 9+4i-i.
3ib=9+3i-a
He hanga arowhānui tō te whārite.
\frac{3ib}{3i}=\frac{9+3i-a}{3i}
Whakawehea ngā taha e rua ki te 3i.
b=\frac{9+3i-a}{3i}
Mā te whakawehe ki te 3i ka wetekia te whakareanga ki te 3i.
b=\frac{ia}{3}+\left(1-3i\right)
Whakawehe -a+\left(9+3i\right) ki te 3i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}