Aromātai
-2a^{2}+6a-12
Whakaroha
-2a^{2}+6a-12
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( a - 1 ) ( a + 3 ) ( 2 - a ) + ( a ^ { 2 } + a + 2 ) ( a - 3 )
Tohaina
Kua tāruatia ki te papatopenga
\left(a^{2}+2a-3\right)\left(2-a\right)+\left(a^{2}+a+2\right)\left(a-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te a-1 ki te a+3 ka whakakotahi i ngā kupu rite.
-a^{3}+7a-6+\left(a^{2}+a+2\right)\left(a-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te a^{2}+2a-3 ki te 2-a ka whakakotahi i ngā kupu rite.
-a^{3}+7a-6+a^{3}-2a^{2}-a-6
Whakamahia te āhuatanga tuaritanga hei whakarea te a^{2}+a+2 ki te a-3 ka whakakotahi i ngā kupu rite.
7a-6-2a^{2}-a-6
Pahekotia te -a^{3} me a^{3}, ka 0.
6a-6-2a^{2}-6
Pahekotia te 7a me -a, ka 6a.
6a-12-2a^{2}
Tangohia te 6 i te -6, ka -12.
\left(a^{2}+2a-3\right)\left(2-a\right)+\left(a^{2}+a+2\right)\left(a-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te a-1 ki te a+3 ka whakakotahi i ngā kupu rite.
-a^{3}+7a-6+\left(a^{2}+a+2\right)\left(a-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te a^{2}+2a-3 ki te 2-a ka whakakotahi i ngā kupu rite.
-a^{3}+7a-6+a^{3}-2a^{2}-a-6
Whakamahia te āhuatanga tuaritanga hei whakarea te a^{2}+a+2 ki te a-3 ka whakakotahi i ngā kupu rite.
7a-6-2a^{2}-a-6
Pahekotia te -a^{3} me a^{3}, ka 0.
6a-6-2a^{2}-6
Pahekotia te 7a me -a, ka 6a.
6a-12-2a^{2}
Tangohia te 6 i te -6, ka -12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}