Aromātai
2a\left(a-1\right)
Whakaroha
2a^{2}-2a
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( a - 1 ) ^ { 2 } ( a + 2 ) + ( 1 - a ) ( a + 1 ) ( a - 2 ) =
Tohaina
Kua tāruatia ki te papatopenga
\left(a^{2}-2a+1\right)\left(a+2\right)+\left(1-a\right)\left(a+1\right)\left(a-2\right)
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-1\right)^{2}.
a^{3}-3a+2+\left(1-a\right)\left(a+1\right)\left(a-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te a^{2}-2a+1 ki te a+2 ka whakakotahi i ngā kupu rite.
a^{3}-3a+2+\left(1-a^{2}\right)\left(a-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 1-a ki te a+1 ka whakakotahi i ngā kupu rite.
a^{3}-3a+2+a-2-a^{3}+2a^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 1-a^{2} ki te a-2.
a^{3}-2a+2-2-a^{3}+2a^{2}
Pahekotia te -3a me a, ka -2a.
a^{3}-2a-a^{3}+2a^{2}
Tangohia te 2 i te 2, ka 0.
-2a+2a^{2}
Pahekotia te a^{3} me -a^{3}, ka 0.
\left(a^{2}-2a+1\right)\left(a+2\right)+\left(1-a\right)\left(a+1\right)\left(a-2\right)
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-1\right)^{2}.
a^{3}-3a+2+\left(1-a\right)\left(a+1\right)\left(a-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te a^{2}-2a+1 ki te a+2 ka whakakotahi i ngā kupu rite.
a^{3}-3a+2+\left(1-a^{2}\right)\left(a-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 1-a ki te a+1 ka whakakotahi i ngā kupu rite.
a^{3}-3a+2+a-2-a^{3}+2a^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 1-a^{2} ki te a-2.
a^{3}-2a+2-2-a^{3}+2a^{2}
Pahekotia te -3a me a, ka -2a.
a^{3}-2a-a^{3}+2a^{2}
Tangohia te 2 i te 2, ka 0.
-2a+2a^{2}
Pahekotia te a^{3} me -a^{3}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}