Aromātai
a
Kimi Pārōnaki e ai ki a
1
Tohaina
Kua tāruatia ki te papatopenga
a-0\times 1+35\times 0\times 0\times 1-\left(-21\times 0\times 2\right)
Whakareatia te 23 ki te 0, ka 0.
a-0+35\times 0\times 0\times 1-\left(-21\times 0\times 2\right)
Whakareatia te 0 ki te 1, ka 0.
a-0+0\times 0\times 1-\left(-21\times 0\times 2\right)
Whakareatia te 35 ki te 0, ka 0.
a-0+0\times 1-\left(-21\times 0\times 2\right)
Whakareatia te 0 ki te 0, ka 0.
a-0+0-\left(-21\times 0\times 2\right)
Whakareatia te 0 ki te 1, ka 0.
a-0-\left(-21\times 0\times 2\right)
Ko te tau i tāpiria he kore ka hua koia tonu.
a-0-0\times 2
Whakareatia te -21 ki te 0, ka 0.
a-0-0
Whakareatia te 0 ki te 2, ka 0.
a+0-0
Whakareatia te -1 ki te 0, ka 0.
a-0
Ko te tau i tāpiria he kore ka hua koia tonu.
a+0
Whakareatia te -1 ki te 0, ka 0.
a
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0\times 1+35\times 0\times 0\times 1-\left(-21\times 0\times 2\right))
Whakareatia te 23 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0+35\times 0\times 0\times 1-\left(-21\times 0\times 2\right))
Whakareatia te 0 ki te 1, ka 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0+0\times 0\times 1-\left(-21\times 0\times 2\right))
Whakareatia te 35 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0+0\times 1-\left(-21\times 0\times 2\right))
Whakareatia te 0 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0+0-\left(-21\times 0\times 2\right))
Whakareatia te 0 ki te 1, ka 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0-\left(-21\times 0\times 2\right))
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0-0\times 2)
Whakareatia te -21 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0-0)
Whakareatia te 0 ki te 2, ka 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a+0-0)
Whakareatia te -1 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0)
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\mathrm{d}}{\mathrm{d}a}(a+0)
Whakareatia te -1 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Ko te tau i tāpiria he kore ka hua koia tonu.
a^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
a^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}