Whakaoti mō a (complex solution)
a=6x^{-\frac{1}{2}}
x\neq 0
Whakaoti mō a
a=\frac{6}{\sqrt{x}}
x>0
Whakaoti mō x
x=\frac{36}{a^{2}}
a>0
Whakaoti mō x (complex solution)
x=\frac{36}{a^{2}}
arg(\sqrt{\frac{1}{a^{2}}}a)<\pi \text{ and }a\neq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x}a=6
He hanga arowhānui tō te whārite.
\frac{\sqrt{x}a}{\sqrt{x}}=\frac{6}{\sqrt{x}}
Whakawehea ngā taha e rua ki te \sqrt{x}.
a=\frac{6}{\sqrt{x}}
Mā te whakawehe ki te \sqrt{x} ka wetekia te whakareanga ki te \sqrt{x}.
a=6x^{-\frac{1}{2}}
Whakawehe 6 ki te \sqrt{x}.
\sqrt{x}a=6
He hanga arowhānui tō te whārite.
\frac{\sqrt{x}a}{\sqrt{x}}=\frac{6}{\sqrt{x}}
Whakawehea ngā taha e rua ki te \sqrt{x}.
a=\frac{6}{\sqrt{x}}
Mā te whakawehe ki te \sqrt{x} ka wetekia te whakareanga ki te \sqrt{x}.
\frac{a\sqrt{x}}{a}=\frac{6}{a}
Whakawehea ngā taha e rua ki te a.
\sqrt{x}=\frac{6}{a}
Mā te whakawehe ki te a ka wetekia te whakareanga ki te a.
x=\frac{36}{a^{2}}
Pūruatia ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}