Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}=180
Whakareatia te 12 ki te 15, ka 180.
a=6\sqrt{5} a=-6\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a^{2}=180
Whakareatia te 12 ki te 15, ka 180.
a^{2}-180=0
Tangohia te 180 mai i ngā taha e rua.
a=\frac{0±\sqrt{0^{2}-4\left(-180\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -180 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-180\right)}}{2}
Pūrua 0.
a=\frac{0±\sqrt{720}}{2}
Whakareatia -4 ki te -180.
a=\frac{0±12\sqrt{5}}{2}
Tuhia te pūtakerua o te 720.
a=6\sqrt{5}
Nā, me whakaoti te whārite a=\frac{0±12\sqrt{5}}{2} ina he tāpiri te ±.
a=-6\sqrt{5}
Nā, me whakaoti te whārite a=\frac{0±12\sqrt{5}}{2} ina he tango te ±.
a=6\sqrt{5} a=-6\sqrt{5}
Kua oti te whārite te whakatau.