Whakaoti mō a
a=-5
a=0
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( a ) = 9 a ^ { 2 } + 46 a . \text { solve for } h ( a ) = - 5
Tohaina
Kua tāruatia ki te papatopenga
a-9a^{2}=46a
Tangohia te 9a^{2} mai i ngā taha e rua.
a-9a^{2}-46a=0
Tangohia te 46a mai i ngā taha e rua.
-45a-9a^{2}=0
Pahekotia te a me -46a, ka -45a.
a\left(-45-9a\right)=0
Tauwehea te a.
a=0 a=-5
Hei kimi otinga whārite, me whakaoti te a=0 me te -45-9a=0.
a-9a^{2}=46a
Tangohia te 9a^{2} mai i ngā taha e rua.
a-9a^{2}-46a=0
Tangohia te 46a mai i ngā taha e rua.
-45a-9a^{2}=0
Pahekotia te a me -46a, ka -45a.
-9a^{2}-45a=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-45\right)±\sqrt{\left(-45\right)^{2}}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, -45 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-45\right)±45}{2\left(-9\right)}
Tuhia te pūtakerua o te \left(-45\right)^{2}.
a=\frac{45±45}{2\left(-9\right)}
Ko te tauaro o -45 ko 45.
a=\frac{45±45}{-18}
Whakareatia 2 ki te -9.
a=\frac{90}{-18}
Nā, me whakaoti te whārite a=\frac{45±45}{-18} ina he tāpiri te ±. Tāpiri 45 ki te 45.
a=-5
Whakawehe 90 ki te -18.
a=\frac{0}{-18}
Nā, me whakaoti te whārite a=\frac{45±45}{-18} ina he tango te ±. Tango 45 mai i 45.
a=0
Whakawehe 0 ki te -18.
a=-5 a=0
Kua oti te whārite te whakatau.
a-9a^{2}=46a
Tangohia te 9a^{2} mai i ngā taha e rua.
a-9a^{2}-46a=0
Tangohia te 46a mai i ngā taha e rua.
-45a-9a^{2}=0
Pahekotia te a me -46a, ka -45a.
-9a^{2}-45a=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-9a^{2}-45a}{-9}=\frac{0}{-9}
Whakawehea ngā taha e rua ki te -9.
a^{2}+\left(-\frac{45}{-9}\right)a=\frac{0}{-9}
Mā te whakawehe ki te -9 ka wetekia te whakareanga ki te -9.
a^{2}+5a=\frac{0}{-9}
Whakawehe -45 ki te -9.
a^{2}+5a=0
Whakawehe 0 ki te -9.
a^{2}+5a+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+5a+\frac{25}{4}=\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(a+\frac{5}{2}\right)^{2}=\frac{25}{4}
Tauwehea a^{2}+5a+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+\frac{5}{2}=\frac{5}{2} a+\frac{5}{2}=-\frac{5}{2}
Whakarūnātia.
a=0 a=-5
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}