Whakaoti mō b
\left\{\begin{matrix}b=-\frac{ia^{2}-4j-3i}{2aj-i}\text{, }&j=0\text{ or }a\neq \frac{i}{2j}\\b\in \mathrm{C}\text{, }&\left(j=\frac{1}{4}i\text{ and }a=2\right)\text{ or }\left(j=-\frac{1}{2}i\text{ and }a=-\frac{2\times 3}{3+3\sqrt{3}i}-\frac{\sqrt{3}i}{2}-\frac{1}{2}\right)\end{matrix}\right.
Whakaoti mō a
a=-i\sqrt{-b+4ij+\left(bj\right)^{2}-3}+ibj
a=i\left(\sqrt{-b+4ij+\left(bj\right)^{2}-3}+bj\right)
Tohaina
Kua tāruatia ki te papatopenga
ia^{2}-ib+2abj=3i+4j
Whakamahia te āhuatanga tohatoha hei whakarea te a^{2}-b ki te i.
-ib+2abj=3i+4j-ia^{2}
Tangohia te ia^{2} mai i ngā taha e rua.
2abj-ib=-ia^{2}+4j+3i
Whakaraupapatia anō ngā kīanga tau.
\left(2aj-i\right)b=-ia^{2}+4j+3i
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(2aj-i\right)b=3i+4j-ia^{2}
He hanga arowhānui tō te whārite.
\frac{\left(2aj-i\right)b}{2aj-i}=\frac{3i+4j-ia^{2}}{2aj-i}
Whakawehea ngā taha e rua ki te -i+2aj.
b=\frac{3i+4j-ia^{2}}{2aj-i}
Mā te whakawehe ki te -i+2aj ka wetekia te whakareanga ki te -i+2aj.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}