Aromātai
a^{16}-256
Whakaroha
a^{16}-256
Tohaina
Kua tāruatia ki te papatopenga
\left(a^{4}-4\right)\left(4+a^{4}\right)\left(a^{8}+16\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te a^{2}-2 ki te a^{2}+2 ka whakakotahi i ngā kupu rite.
\left(a^{8}-16\right)\left(a^{8}+16\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te a^{4}-4 ki te 4+a^{4} ka whakakotahi i ngā kupu rite.
\left(a^{8}\right)^{2}-256
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 16.
a^{16}-256
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 8 me te 2 kia riro ai te 16.
\left(a^{4}-4\right)\left(4+a^{4}\right)\left(a^{8}+16\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te a^{2}-2 ki te a^{2}+2 ka whakakotahi i ngā kupu rite.
\left(a^{8}-16\right)\left(a^{8}+16\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te a^{4}-4 ki te 4+a^{4} ka whakakotahi i ngā kupu rite.
\left(a^{8}\right)^{2}-256
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 16.
a^{16}-256
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 8 me te 2 kia riro ai te 16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}