Aromātai
\frac{1}{a^{46}}
Kimi Pārōnaki e ai ki a
-\frac{46}{a^{47}}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
( a ^ { - 7 } \div a ^ { 15 } ) \div ( a ^ { 6 } ) ^ { 4 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{a^{22}}}{\left(a^{6}\right)^{4}}
Tuhia anō te a^{15} hei a^{-7}a^{22}. Me whakakore tahi te a^{-7} i te taurunga me te tauraro.
\frac{\frac{1}{a^{22}}}{a^{24}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 4 kia riro ai te 24.
\frac{1}{a^{22}a^{24}}
Tuhia te \frac{\frac{1}{a^{22}}}{a^{24}} hei hautanga kotahi.
\frac{1}{a^{46}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 22 me te 24 kia riro ai te 46.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a^{22}}}{\left(a^{6}\right)^{4}})
Tuhia anō te a^{15} hei a^{-7}a^{22}. Me whakakore tahi te a^{-7} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a^{22}}}{a^{24}})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 4 kia riro ai te 24.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{22}a^{24}})
Tuhia te \frac{\frac{1}{a^{22}}}{a^{24}} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{46}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 22 me te 24 kia riro ai te 46.
-\left(a^{46}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{46})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{46}\right)^{-2}\times 46a^{46-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-46a^{45}\left(a^{46}\right)^{-2}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}