Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{1}{a^{22}}}{\left(a^{6}\right)^{4}}
Tuhia anō te a^{15} hei a^{-7}a^{22}. Me whakakore tahi te a^{-7} i te taurunga me te tauraro.
\frac{\frac{1}{a^{22}}}{a^{24}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 4 kia riro ai te 24.
\frac{1}{a^{22}a^{24}}
Tuhia te \frac{\frac{1}{a^{22}}}{a^{24}} hei hautanga kotahi.
\frac{1}{a^{46}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 22 me te 24 kia riro ai te 46.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a^{22}}}{\left(a^{6}\right)^{4}})
Tuhia anō te a^{15} hei a^{-7}a^{22}. Me whakakore tahi te a^{-7} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a^{22}}}{a^{24}})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 4 kia riro ai te 24.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{22}a^{24}})
Tuhia te \frac{\frac{1}{a^{22}}}{a^{24}} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{46}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 22 me te 24 kia riro ai te 46.
-\left(a^{46}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{46})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{46}\right)^{-2}\times 46a^{46-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-46a^{45}\left(a^{46}\right)^{-2}
Whakarūnātia.