Aromātai
1
Tauwehe
1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(a+y\right)^{2}-4-\left(a-y\right)^{2}-4\left(ay-1\right)+1
Whakaarohia te \left(a+y-2\right)\left(a+y+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}, ina a=a+y me b=2. Pūrua 2.
a^{2}+2ay+y^{2}-4-\left(a-y\right)^{2}-4\left(ay-1\right)+1
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+y\right)^{2}.
a^{2}+2ay+y^{2}-4-\left(a^{2}-2ay+y^{2}\right)-4\left(ay-1\right)+1
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-y\right)^{2}.
a^{2}+2ay+y^{2}-4-a^{2}+2ay-y^{2}-4\left(ay-1\right)+1
Hei kimi i te tauaro o a^{2}-2ay+y^{2}, kimihia te tauaro o ia taurangi.
2ay+y^{2}-4+2ay-y^{2}-4\left(ay-1\right)+1
Pahekotia te a^{2} me -a^{2}, ka 0.
4ay+y^{2}-4-y^{2}-4\left(ay-1\right)+1
Pahekotia te 2ay me 2ay, ka 4ay.
4ay-4-4\left(ay-1\right)+1
Pahekotia te y^{2} me -y^{2}, ka 0.
4ay-4-4ay+4+1
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te ay-1.
-4+4+1
Pahekotia te 4ay me -4ay, ka 0.
1
Tāpirihia te -4 ki te 4, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}