Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō c (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image
Whakaoti mō c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}+2ac+c^{2}=\left(a-c\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(a+c\right)^{2}.
a^{2}+2ac+c^{2}=a^{2}-2ac+c^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(a-c\right)^{2}.
a^{2}+2ac+c^{2}-a^{2}=-2ac+c^{2}
Tangohia te a^{2} mai i ngā taha e rua.
2ac+c^{2}=-2ac+c^{2}
Pahekotia te a^{2} me -a^{2}, ka 0.
2ac+c^{2}+2ac=c^{2}
Me tāpiri te 2ac ki ngā taha e rua.
4ac+c^{2}=c^{2}
Pahekotia te 2ac me 2ac, ka 4ac.
4ac=c^{2}-c^{2}
Tangohia te c^{2} mai i ngā taha e rua.
4ac=0
Pahekotia te c^{2} me -c^{2}, ka 0.
4ca=0
He hanga arowhānui tō te whārite.
a=0
Whakawehe 0 ki te 4c.
a^{2}+2ac+c^{2}=\left(a-c\right)^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+c\right)^{2}.
a^{2}+2ac+c^{2}=a^{2}-2ac+c^{2}
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-c\right)^{2}.
a^{2}+2ac+c^{2}+2ac=a^{2}+c^{2}
Me tāpiri te 2ac ki ngā taha e rua.
a^{2}+4ac+c^{2}=a^{2}+c^{2}
Pahekotia te 2ac me 2ac, ka 4ac.
a^{2}+4ac+c^{2}-c^{2}=a^{2}
Tangohia te c^{2} mai i ngā taha e rua.
a^{2}+4ac=a^{2}
Pahekotia te c^{2} me -c^{2}, ka 0.
4ac=a^{2}-a^{2}
Tangohia te a^{2} mai i ngā taha e rua.
4ac=0
Pahekotia te a^{2} me -a^{2}, ka 0.
c=0
Whakawehe 0 ki te 4a.
a^{2}+2ac+c^{2}=\left(a-c\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(a+c\right)^{2}.
a^{2}+2ac+c^{2}=a^{2}-2ac+c^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(a-c\right)^{2}.
a^{2}+2ac+c^{2}-a^{2}=-2ac+c^{2}
Tangohia te a^{2} mai i ngā taha e rua.
2ac+c^{2}=-2ac+c^{2}
Pahekotia te a^{2} me -a^{2}, ka 0.
2ac+c^{2}+2ac=c^{2}
Me tāpiri te 2ac ki ngā taha e rua.
4ac+c^{2}=c^{2}
Pahekotia te 2ac me 2ac, ka 4ac.
4ac=c^{2}-c^{2}
Tangohia te c^{2} mai i ngā taha e rua.
4ac=0
Pahekotia te c^{2} me -c^{2}, ka 0.
4ca=0
He hanga arowhānui tō te whārite.
a=0
Whakawehe 0 ki te 4c.
a^{2}+2ac+c^{2}=\left(a-c\right)^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+c\right)^{2}.
a^{2}+2ac+c^{2}=a^{2}-2ac+c^{2}
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-c\right)^{2}.
a^{2}+2ac+c^{2}+2ac=a^{2}+c^{2}
Me tāpiri te 2ac ki ngā taha e rua.
a^{2}+4ac+c^{2}=a^{2}+c^{2}
Pahekotia te 2ac me 2ac, ka 4ac.
a^{2}+4ac+c^{2}-c^{2}=a^{2}
Tangohia te c^{2} mai i ngā taha e rua.
a^{2}+4ac=a^{2}
Pahekotia te c^{2} me -c^{2}, ka 0.
4ac=a^{2}-a^{2}
Tangohia te a^{2} mai i ngā taha e rua.
4ac=0
Pahekotia te a^{2} me -a^{2}, ka 0.
c=0
Whakawehe 0 ki te 4a.