Whakaoti mō b (complex solution)
\left\{\begin{matrix}\\b=a\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&a=0\end{matrix}\right.
Whakaoti mō b
\left\{\begin{matrix}\\b=a\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&a=0\end{matrix}\right.
Whakaoti mō a
a=b
a=0
Tohaina
Kua tāruatia ki te papatopenga
a^{2}-b^{2}=b\left(a-b\right)
Whakaarohia te \left(a+b\right)\left(a-b\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-b^{2}=ba-b^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te a-b.
a^{2}-b^{2}-ba=-b^{2}
Tangohia te ba mai i ngā taha e rua.
a^{2}-b^{2}-ba+b^{2}=0
Me tāpiri te b^{2} ki ngā taha e rua.
a^{2}-ba=0
Pahekotia te -b^{2} me b^{2}, ka 0.
-ba=-a^{2}
Tangohia te a^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
ba=a^{2}
Me whakakore te -1 ki ngā taha e rua.
ab=a^{2}
He hanga arowhānui tō te whārite.
\frac{ab}{a}=\frac{a^{2}}{a}
Whakawehea ngā taha e rua ki te a.
b=\frac{a^{2}}{a}
Mā te whakawehe ki te a ka wetekia te whakareanga ki te a.
b=a
Whakawehe a^{2} ki te a.
a^{2}-b^{2}=b\left(a-b\right)
Whakaarohia te \left(a+b\right)\left(a-b\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-b^{2}=ba-b^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te a-b.
a^{2}-b^{2}-ba=-b^{2}
Tangohia te ba mai i ngā taha e rua.
a^{2}-b^{2}-ba+b^{2}=0
Me tāpiri te b^{2} ki ngā taha e rua.
a^{2}-ba=0
Pahekotia te -b^{2} me b^{2}, ka 0.
-ba=-a^{2}
Tangohia te a^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
ba=a^{2}
Me whakakore te -1 ki ngā taha e rua.
ab=a^{2}
He hanga arowhānui tō te whārite.
\frac{ab}{a}=\frac{a^{2}}{a}
Whakawehea ngā taha e rua ki te a.
b=\frac{a^{2}}{a}
Mā te whakawehe ki te a ka wetekia te whakareanga ki te a.
b=a
Whakawehe a^{2} ki te a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}