Tīpoka ki ngā ihirangi matua
Whakaoti mō b (complex solution)
Tick mark Image
Whakaoti mō b
Tick mark Image
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}-b^{2}=b\left(a-b\right)
Whakaarohia te \left(a+b\right)\left(a-b\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-b^{2}=ba-b^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te a-b.
a^{2}-b^{2}-ba=-b^{2}
Tangohia te ba mai i ngā taha e rua.
a^{2}-b^{2}-ba+b^{2}=0
Me tāpiri te b^{2} ki ngā taha e rua.
a^{2}-ba=0
Pahekotia te -b^{2} me b^{2}, ka 0.
-ba=-a^{2}
Tangohia te a^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
ba=a^{2}
Me whakakore te -1 ki ngā taha e rua.
ab=a^{2}
He hanga arowhānui tō te whārite.
\frac{ab}{a}=\frac{a^{2}}{a}
Whakawehea ngā taha e rua ki te a.
b=\frac{a^{2}}{a}
Mā te whakawehe ki te a ka wetekia te whakareanga ki te a.
b=a
Whakawehe a^{2} ki te a.
a^{2}-b^{2}=b\left(a-b\right)
Whakaarohia te \left(a+b\right)\left(a-b\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-b^{2}=ba-b^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te a-b.
a^{2}-b^{2}-ba=-b^{2}
Tangohia te ba mai i ngā taha e rua.
a^{2}-b^{2}-ba+b^{2}=0
Me tāpiri te b^{2} ki ngā taha e rua.
a^{2}-ba=0
Pahekotia te -b^{2} me b^{2}, ka 0.
-ba=-a^{2}
Tangohia te a^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
ba=a^{2}
Me whakakore te -1 ki ngā taha e rua.
ab=a^{2}
He hanga arowhānui tō te whārite.
\frac{ab}{a}=\frac{a^{2}}{a}
Whakawehea ngā taha e rua ki te a.
b=\frac{a^{2}}{a}
Mā te whakawehe ki te a ka wetekia te whakareanga ki te a.
b=a
Whakawehe a^{2} ki te a.