Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō b (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(a+b\right)^{2}=\left(a+b\right)^{2}
Whakareatia te a+b ki te a+b, ka \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-a^{2}=2ab+b^{2}
Tangohia te a^{2} mai i ngā taha e rua.
2ab+b^{2}=2ab+b^{2}
Pahekotia te a^{2} me -a^{2}, ka 0.
2ab+b^{2}-2ab=b^{2}
Tangohia te 2ab mai i ngā taha e rua.
b^{2}=b^{2}
Pahekotia te 2ab me -2ab, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
a\in \mathrm{C}
He pono tēnei mō tētahi a ahakoa.
\left(a+b\right)^{2}=\left(a+b\right)^{2}
Whakareatia te a+b ki te a+b, ka \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-2ab=a^{2}+b^{2}
Tangohia te 2ab mai i ngā taha e rua.
a^{2}+b^{2}=a^{2}+b^{2}
Pahekotia te 2ab me -2ab, ka 0.
a^{2}+b^{2}-b^{2}=a^{2}
Tangohia te b^{2} mai i ngā taha e rua.
a^{2}=a^{2}
Pahekotia te b^{2} me -b^{2}, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
b\in \mathrm{C}
He pono tēnei mō tētahi b ahakoa.
\left(a+b\right)^{2}=\left(a+b\right)^{2}
Whakareatia te a+b ki te a+b, ka \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-a^{2}=2ab+b^{2}
Tangohia te a^{2} mai i ngā taha e rua.
2ab+b^{2}=2ab+b^{2}
Pahekotia te a^{2} me -a^{2}, ka 0.
2ab+b^{2}-2ab=b^{2}
Tangohia te 2ab mai i ngā taha e rua.
b^{2}=b^{2}
Pahekotia te 2ab me -2ab, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
a\in \mathrm{R}
He pono tēnei mō tētahi a ahakoa.
\left(a+b\right)^{2}=\left(a+b\right)^{2}
Whakareatia te a+b ki te a+b, ka \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-2ab=a^{2}+b^{2}
Tangohia te 2ab mai i ngā taha e rua.
a^{2}+b^{2}=a^{2}+b^{2}
Pahekotia te 2ab me -2ab, ka 0.
a^{2}+b^{2}-b^{2}=a^{2}
Tangohia te b^{2} mai i ngā taha e rua.
a^{2}=a^{2}
Pahekotia te b^{2} me -b^{2}, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
b\in \mathrm{R}
He pono tēnei mō tētahi b ahakoa.