Whakaoti mō a (complex solution)
a\in \mathrm{C}
Whakaoti mō b (complex solution)
b\in \mathrm{C}
Whakaoti mō a
a\in \mathrm{R}
Whakaoti mō b
b\in \mathrm{R}
Tohaina
Kua tāruatia ki te papatopenga
\left(a+b\right)^{2}=\left(a+b\right)^{2}
Whakareatia te a+b ki te a+b, ka \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-a^{2}=2ab+b^{2}
Tangohia te a^{2} mai i ngā taha e rua.
2ab+b^{2}=2ab+b^{2}
Pahekotia te a^{2} me -a^{2}, ka 0.
2ab+b^{2}-2ab=b^{2}
Tangohia te 2ab mai i ngā taha e rua.
b^{2}=b^{2}
Pahekotia te 2ab me -2ab, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
a\in \mathrm{C}
He pono tēnei mō tētahi a ahakoa.
\left(a+b\right)^{2}=\left(a+b\right)^{2}
Whakareatia te a+b ki te a+b, ka \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-2ab=a^{2}+b^{2}
Tangohia te 2ab mai i ngā taha e rua.
a^{2}+b^{2}=a^{2}+b^{2}
Pahekotia te 2ab me -2ab, ka 0.
a^{2}+b^{2}-b^{2}=a^{2}
Tangohia te b^{2} mai i ngā taha e rua.
a^{2}=a^{2}
Pahekotia te b^{2} me -b^{2}, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
b\in \mathrm{C}
He pono tēnei mō tētahi b ahakoa.
\left(a+b\right)^{2}=\left(a+b\right)^{2}
Whakareatia te a+b ki te a+b, ka \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-a^{2}=2ab+b^{2}
Tangohia te a^{2} mai i ngā taha e rua.
2ab+b^{2}=2ab+b^{2}
Pahekotia te a^{2} me -a^{2}, ka 0.
2ab+b^{2}-2ab=b^{2}
Tangohia te 2ab mai i ngā taha e rua.
b^{2}=b^{2}
Pahekotia te 2ab me -2ab, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
a\in \mathrm{R}
He pono tēnei mō tētahi a ahakoa.
\left(a+b\right)^{2}=\left(a+b\right)^{2}
Whakareatia te a+b ki te a+b, ka \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-2ab=a^{2}+b^{2}
Tangohia te 2ab mai i ngā taha e rua.
a^{2}+b^{2}=a^{2}+b^{2}
Pahekotia te 2ab me -2ab, ka 0.
a^{2}+b^{2}-b^{2}=a^{2}
Tangohia te b^{2} mai i ngā taha e rua.
a^{2}=a^{2}
Pahekotia te b^{2} me -b^{2}, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
b\in \mathrm{R}
He pono tēnei mō tētahi b ahakoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}