Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(a+3b\right)^{2}-1-\left(a+3b\right)^{2}-2
Whakaarohia te \left(a+3b-1\right)\left(a+3b+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}, ina a=a+3b me b=1. Pūrua 1.
a^{2}+6ab+9b^{2}-1-\left(a+3b\right)^{2}-2
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+3b\right)^{2}.
a^{2}+6ab+9b^{2}-1-\left(a^{2}+6ab+9b^{2}\right)-2
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(a+3b\right)^{2}.
a^{2}+6ab+9b^{2}-1-a^{2}-6ab-9b^{2}-2
Hei kimi i te tauaro o a^{2}+6ab+9b^{2}, kimihia te tauaro o ia taurangi.
6ab+9b^{2}-1-6ab-9b^{2}-2
Pahekotia te a^{2} me -a^{2}, ka 0.
9b^{2}-1-9b^{2}-2
Pahekotia te 6ab me -6ab, ka 0.
-1-2
Pahekotia te 9b^{2} me -9b^{2}, ka 0.
-3
Tangohia te 2 i te -1, ka -3.