Whakaoti mō a
a=12
a=4
Tohaina
Kua tāruatia ki te papatopenga
a^{2}+8a-48=2a\left(a-4\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te a+12 ki te a-4 ka whakakotahi i ngā kupu rite.
a^{2}+8a-48=2a^{2}-8a
Whakamahia te āhuatanga tohatoha hei whakarea te 2a ki te a-4.
a^{2}+8a-48-2a^{2}=-8a
Tangohia te 2a^{2} mai i ngā taha e rua.
-a^{2}+8a-48=-8a
Pahekotia te a^{2} me -2a^{2}, ka -a^{2}.
-a^{2}+8a-48+8a=0
Me tāpiri te 8a ki ngā taha e rua.
-a^{2}+16a-48=0
Pahekotia te 8a me 8a, ka 16a.
a+b=16 ab=-\left(-48\right)=48
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -a^{2}+aa+ba-48. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,48 2,24 3,16 4,12 6,8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 48.
1+48=49 2+24=26 3+16=19 4+12=16 6+8=14
Tātaihia te tapeke mō ia takirua.
a=12 b=4
Ko te otinga te takirua ka hoatu i te tapeke 16.
\left(-a^{2}+12a\right)+\left(4a-48\right)
Tuhia anō te -a^{2}+16a-48 hei \left(-a^{2}+12a\right)+\left(4a-48\right).
-a\left(a-12\right)+4\left(a-12\right)
Tauwehea te -a i te tuatahi me te 4 i te rōpū tuarua.
\left(a-12\right)\left(-a+4\right)
Whakatauwehea atu te kīanga pātahi a-12 mā te whakamahi i te āhuatanga tātai tohatoha.
a=12 a=4
Hei kimi otinga whārite, me whakaoti te a-12=0 me te -a+4=0.
a^{2}+8a-48=2a\left(a-4\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te a+12 ki te a-4 ka whakakotahi i ngā kupu rite.
a^{2}+8a-48=2a^{2}-8a
Whakamahia te āhuatanga tohatoha hei whakarea te 2a ki te a-4.
a^{2}+8a-48-2a^{2}=-8a
Tangohia te 2a^{2} mai i ngā taha e rua.
-a^{2}+8a-48=-8a
Pahekotia te a^{2} me -2a^{2}, ka -a^{2}.
-a^{2}+8a-48+8a=0
Me tāpiri te 8a ki ngā taha e rua.
-a^{2}+16a-48=0
Pahekotia te 8a me 8a, ka 16a.
a=\frac{-16±\sqrt{16^{2}-4\left(-1\right)\left(-48\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 16 mō b, me -48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-16±\sqrt{256-4\left(-1\right)\left(-48\right)}}{2\left(-1\right)}
Pūrua 16.
a=\frac{-16±\sqrt{256+4\left(-48\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
a=\frac{-16±\sqrt{256-192}}{2\left(-1\right)}
Whakareatia 4 ki te -48.
a=\frac{-16±\sqrt{64}}{2\left(-1\right)}
Tāpiri 256 ki te -192.
a=\frac{-16±8}{2\left(-1\right)}
Tuhia te pūtakerua o te 64.
a=\frac{-16±8}{-2}
Whakareatia 2 ki te -1.
a=-\frac{8}{-2}
Nā, me whakaoti te whārite a=\frac{-16±8}{-2} ina he tāpiri te ±. Tāpiri -16 ki te 8.
a=4
Whakawehe -8 ki te -2.
a=-\frac{24}{-2}
Nā, me whakaoti te whārite a=\frac{-16±8}{-2} ina he tango te ±. Tango 8 mai i -16.
a=12
Whakawehe -24 ki te -2.
a=4 a=12
Kua oti te whārite te whakatau.
a^{2}+8a-48=2a\left(a-4\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te a+12 ki te a-4 ka whakakotahi i ngā kupu rite.
a^{2}+8a-48=2a^{2}-8a
Whakamahia te āhuatanga tohatoha hei whakarea te 2a ki te a-4.
a^{2}+8a-48-2a^{2}=-8a
Tangohia te 2a^{2} mai i ngā taha e rua.
-a^{2}+8a-48=-8a
Pahekotia te a^{2} me -2a^{2}, ka -a^{2}.
-a^{2}+8a-48+8a=0
Me tāpiri te 8a ki ngā taha e rua.
-a^{2}+16a-48=0
Pahekotia te 8a me 8a, ka 16a.
-a^{2}+16a=48
Me tāpiri te 48 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{-a^{2}+16a}{-1}=\frac{48}{-1}
Whakawehea ngā taha e rua ki te -1.
a^{2}+\frac{16}{-1}a=\frac{48}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
a^{2}-16a=\frac{48}{-1}
Whakawehe 16 ki te -1.
a^{2}-16a=-48
Whakawehe 48 ki te -1.
a^{2}-16a+\left(-8\right)^{2}=-48+\left(-8\right)^{2}
Whakawehea te -16, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -8. Nā, tāpiria te pūrua o te -8 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-16a+64=-48+64
Pūrua -8.
a^{2}-16a+64=16
Tāpiri -48 ki te 64.
\left(a-8\right)^{2}=16
Tauwehea a^{2}-16a+64. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-8\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-8=4 a-8=-4
Whakarūnātia.
a=12 a=4
Me tāpiri 8 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}