Whakaoti mō a
a=d^{2}+d-10
Whakaoti mō d
d=\frac{\sqrt{4a+41}-1}{2}
d=\frac{-\sqrt{4a+41}-1}{2}\text{, }a\geq -\frac{41}{4}
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
( a + 10 ) ^ { 2 } = ( a - d + 10 ) ( a + d + 11 )
Tohaina
Kua tāruatia ki te papatopenga
a^{2}+20a+100=\left(a-d+10\right)\left(a+d+11\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(a+10\right)^{2}.
a^{2}+20a+100=a^{2}+21a-d^{2}-d+110
Whakamahia te āhuatanga tuaritanga hei whakarea te a-d+10 ki te a+d+11 ka whakakotahi i ngā kupu rite.
a^{2}+20a+100-a^{2}=21a-d^{2}-d+110
Tangohia te a^{2} mai i ngā taha e rua.
20a+100=21a-d^{2}-d+110
Pahekotia te a^{2} me -a^{2}, ka 0.
20a+100-21a=-d^{2}-d+110
Tangohia te 21a mai i ngā taha e rua.
-a+100=-d^{2}-d+110
Pahekotia te 20a me -21a, ka -a.
-a=-d^{2}-d+110-100
Tangohia te 100 mai i ngā taha e rua.
-a=-d^{2}-d+10
Tangohia te 100 i te 110, ka 10.
-a=10-d-d^{2}
He hanga arowhānui tō te whārite.
\frac{-a}{-1}=\frac{10-d-d^{2}}{-1}
Whakawehea ngā taha e rua ki te -1.
a=\frac{10-d-d^{2}}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
a=d^{2}+d-10
Whakawehe -d^{2}-d+10 ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}