Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image
Whakaoti mō d
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}+20a+100=\left(a-d+10\right)\left(a+d+11\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(a+10\right)^{2}.
a^{2}+20a+100=a^{2}+21a-d^{2}-d+110
Whakamahia te āhuatanga tuaritanga hei whakarea te a-d+10 ki te a+d+11 ka whakakotahi i ngā kupu rite.
a^{2}+20a+100-a^{2}=21a-d^{2}-d+110
Tangohia te a^{2} mai i ngā taha e rua.
20a+100=21a-d^{2}-d+110
Pahekotia te a^{2} me -a^{2}, ka 0.
20a+100-21a=-d^{2}-d+110
Tangohia te 21a mai i ngā taha e rua.
-a+100=-d^{2}-d+110
Pahekotia te 20a me -21a, ka -a.
-a=-d^{2}-d+110-100
Tangohia te 100 mai i ngā taha e rua.
-a=-d^{2}-d+10
Tangohia te 100 i te 110, ka 10.
-a=10-d-d^{2}
He hanga arowhānui tō te whārite.
\frac{-a}{-1}=\frac{10-d-d^{2}}{-1}
Whakawehea ngā taha e rua ki te -1.
a=\frac{10-d-d^{2}}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
a=d^{2}+d-10
Whakawehe -d^{2}-d+10 ki te -1.