Aromātai
4ay+1
Whakaroha
4ay+1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4y^{2}+4ay+4y+a^{2}+2a+1-\left(a-1\right)\left(a+1\right)-\left(1+2y\right)^{2}-2a
Pūrua a+1+2y.
4y^{2}+4ay+4y+a^{2}+2a+1-\left(a^{2}-1\right)-\left(1+2y\right)^{2}-2a
Whakaarohia te \left(a-1\right)\left(a+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
4y^{2}+4ay+4y+a^{2}+2a+1-a^{2}+1-\left(1+2y\right)^{2}-2a
Hei kimi i te tauaro o a^{2}-1, kimihia te tauaro o ia taurangi.
4y^{2}+4ay+4y+2a+1+1-\left(1+2y\right)^{2}-2a
Pahekotia te a^{2} me -a^{2}, ka 0.
4y^{2}+4ay+4y+2a+2-\left(1+2y\right)^{2}-2a
Tāpirihia te 1 ki te 1, ka 2.
4y^{2}+4ay+4y+2a+2-\left(1+4y+4y^{2}\right)-2a
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+2y\right)^{2}.
4y^{2}+4ay+4y+2a+2-1-4y-4y^{2}-2a
Hei kimi i te tauaro o 1+4y+4y^{2}, kimihia te tauaro o ia taurangi.
4y^{2}+4ay+4y+2a+1-4y-4y^{2}-2a
Tangohia te 1 i te 2, ka 1.
4y^{2}+4ay+2a+1-4y^{2}-2a
Pahekotia te 4y me -4y, ka 0.
4ay+2a+1-2a
Pahekotia te 4y^{2} me -4y^{2}, ka 0.
4ay+1
Pahekotia te 2a me -2a, ka 0.
4y^{2}+4ay+4y+a^{2}+2a+1-\left(a-1\right)\left(a+1\right)-\left(1+2y\right)^{2}-2a
Pūrua a+1+2y.
4y^{2}+4ay+4y+a^{2}+2a+1-\left(a^{2}-1\right)-\left(1+2y\right)^{2}-2a
Whakaarohia te \left(a-1\right)\left(a+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
4y^{2}+4ay+4y+a^{2}+2a+1-a^{2}+1-\left(1+2y\right)^{2}-2a
Hei kimi i te tauaro o a^{2}-1, kimihia te tauaro o ia taurangi.
4y^{2}+4ay+4y+2a+1+1-\left(1+2y\right)^{2}-2a
Pahekotia te a^{2} me -a^{2}, ka 0.
4y^{2}+4ay+4y+2a+2-\left(1+2y\right)^{2}-2a
Tāpirihia te 1 ki te 1, ka 2.
4y^{2}+4ay+4y+2a+2-\left(1+4y+4y^{2}\right)-2a
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+2y\right)^{2}.
4y^{2}+4ay+4y+2a+2-1-4y-4y^{2}-2a
Hei kimi i te tauaro o 1+4y+4y^{2}, kimihia te tauaro o ia taurangi.
4y^{2}+4ay+4y+2a+1-4y-4y^{2}-2a
Tangohia te 1 i te 2, ka 1.
4y^{2}+4ay+2a+1-4y^{2}-2a
Pahekotia te 4y me -4y, ka 0.
4ay+2a+1-2a
Pahekotia te 4y^{2} me -4y^{2}, ka 0.
4ay+1
Pahekotia te 2a me -2a, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}