Whakaoti mō A (complex solution)
A\in \mathrm{C}
Whakaoti mō B (complex solution)
B\in \mathrm{C}
Whakaoti mō A
A\in \mathrm{R}
Whakaoti mō B
B\in \mathrm{R}
Tohaina
Kua tāruatia ki te papatopenga
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Whakareatia te A-B ki te A-B, ka \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}-A^{2}=-2AB+B^{2}
Tangohia te A^{2} mai i ngā taha e rua.
-2AB+B^{2}=-2AB+B^{2}
Pahekotia te A^{2} me -A^{2}, ka 0.
-2AB+B^{2}+2AB=B^{2}
Me tāpiri te 2AB ki ngā taha e rua.
B^{2}=B^{2}
Pahekotia te -2AB me 2AB, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
A\in \mathrm{C}
He pono tēnei mō tētahi A ahakoa.
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Whakareatia te A-B ki te A-B, ka \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}+2AB=A^{2}+B^{2}
Me tāpiri te 2AB ki ngā taha e rua.
A^{2}+B^{2}=A^{2}+B^{2}
Pahekotia te -2AB me 2AB, ka 0.
A^{2}+B^{2}-B^{2}=A^{2}
Tangohia te B^{2} mai i ngā taha e rua.
A^{2}=A^{2}
Pahekotia te B^{2} me -B^{2}, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
B\in \mathrm{C}
He pono tēnei mō tētahi B ahakoa.
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Whakareatia te A-B ki te A-B, ka \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}-A^{2}=-2AB+B^{2}
Tangohia te A^{2} mai i ngā taha e rua.
-2AB+B^{2}=-2AB+B^{2}
Pahekotia te A^{2} me -A^{2}, ka 0.
-2AB+B^{2}+2AB=B^{2}
Me tāpiri te 2AB ki ngā taha e rua.
B^{2}=B^{2}
Pahekotia te -2AB me 2AB, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
A\in \mathrm{R}
He pono tēnei mō tētahi A ahakoa.
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Whakareatia te A-B ki te A-B, ka \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}+2AB=A^{2}+B^{2}
Me tāpiri te 2AB ki ngā taha e rua.
A^{2}+B^{2}=A^{2}+B^{2}
Pahekotia te -2AB me 2AB, ka 0.
A^{2}+B^{2}-B^{2}=A^{2}
Tangohia te B^{2} mai i ngā taha e rua.
A^{2}=A^{2}
Pahekotia te B^{2} me -B^{2}, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
B\in \mathrm{R}
He pono tēnei mō tētahi B ahakoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}