Tīpoka ki ngā ihirangi matua
Whakaoti mō A (complex solution)
Tick mark Image
Whakaoti mō B (complex solution)
Tick mark Image
Whakaoti mō A
Tick mark Image
Whakaoti mō B
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(A-B\right)^{2}=\left(A-B\right)^{2}
Whakareatia te A-B ki te A-B, ka \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}-A^{2}=-2AB+B^{2}
Tangohia te A^{2} mai i ngā taha e rua.
-2AB+B^{2}=-2AB+B^{2}
Pahekotia te A^{2} me -A^{2}, ka 0.
-2AB+B^{2}+2AB=B^{2}
Me tāpiri te 2AB ki ngā taha e rua.
B^{2}=B^{2}
Pahekotia te -2AB me 2AB, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
A\in \mathrm{C}
He pono tēnei mō tētahi A ahakoa.
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Whakareatia te A-B ki te A-B, ka \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}+2AB=A^{2}+B^{2}
Me tāpiri te 2AB ki ngā taha e rua.
A^{2}+B^{2}=A^{2}+B^{2}
Pahekotia te -2AB me 2AB, ka 0.
A^{2}+B^{2}-B^{2}=A^{2}
Tangohia te B^{2} mai i ngā taha e rua.
A^{2}=A^{2}
Pahekotia te B^{2} me -B^{2}, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
B\in \mathrm{C}
He pono tēnei mō tētahi B ahakoa.
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Whakareatia te A-B ki te A-B, ka \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}-A^{2}=-2AB+B^{2}
Tangohia te A^{2} mai i ngā taha e rua.
-2AB+B^{2}=-2AB+B^{2}
Pahekotia te A^{2} me -A^{2}, ka 0.
-2AB+B^{2}+2AB=B^{2}
Me tāpiri te 2AB ki ngā taha e rua.
B^{2}=B^{2}
Pahekotia te -2AB me 2AB, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
A\in \mathrm{R}
He pono tēnei mō tētahi A ahakoa.
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Whakareatia te A-B ki te A-B, ka \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}+2AB=A^{2}+B^{2}
Me tāpiri te 2AB ki ngā taha e rua.
A^{2}+B^{2}=A^{2}+B^{2}
Pahekotia te -2AB me 2AB, ka 0.
A^{2}+B^{2}-B^{2}=A^{2}
Tangohia te B^{2} mai i ngā taha e rua.
A^{2}=A^{2}
Pahekotia te B^{2} me -B^{2}, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
B\in \mathrm{R}
He pono tēnei mō tētahi B ahakoa.