Aromātai
\frac{112}{13}\approx 8.615384615
Tauwehe
\frac{7 \cdot 2 ^ {4}}{13} = 8\frac{8}{13} = 8.615384615384615
Tohaina
Kua tāruatia ki te papatopenga
\frac{13+37}{5.2}+\frac{1+\frac{177}{3}}{12}-6
Whakawehea te 91 ki te 7, kia riro ko 13.
\frac{50}{5.2}+\frac{1+\frac{177}{3}}{12}-6
Tāpirihia te 13 ki te 37, ka 50.
\frac{500}{52}+\frac{1+\frac{177}{3}}{12}-6
Whakarohaina te \frac{50}{5.2} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{125}{13}+\frac{1+\frac{177}{3}}{12}-6
Whakahekea te hautanga \frac{500}{52} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{125}{13}+\frac{1+59}{12}-6
Whakawehea te 177 ki te 3, kia riro ko 59.
\frac{125}{13}+\frac{60}{12}-6
Tāpirihia te 1 ki te 59, ka 60.
\frac{125}{13}+5-6
Whakawehea te 60 ki te 12, kia riro ko 5.
\frac{125}{13}+\frac{65}{13}-6
Me tahuri te 5 ki te hautau \frac{65}{13}.
\frac{125+65}{13}-6
Tā te mea he rite te tauraro o \frac{125}{13} me \frac{65}{13}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{190}{13}-6
Tāpirihia te 125 ki te 65, ka 190.
\frac{190}{13}-\frac{78}{13}
Me tahuri te 6 ki te hautau \frac{78}{13}.
\frac{190-78}{13}
Tā te mea he rite te tauraro o \frac{190}{13} me \frac{78}{13}, me tango rāua mā te tango i ō raua taurunga.
\frac{112}{13}
Tangohia te 78 i te 190, ka 112.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}