Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(9x+63\right)^{2}=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-1134±\sqrt{1134^{2}-4\times 81\times 1944}}{2\times 81}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 81 mō te a, te 1134 mō te b, me te 1944 mō te c i te ture pūrua.
x=\frac{-1134±810}{162}
Mahia ngā tātaitai.
x=-2 x=-12
Whakaotia te whārite x=\frac{-1134±810}{162} ina he tōrunga te ±, ina he tōraro te ±.
81\left(x+2\right)\left(x+12\right)>0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x+2<0 x+12<0
Kia tōrunga te otinga, me tōraro tahi te x+2 me te x+12, me tōrunga tahi rānei. Whakaarohia te tauira ina he tōraro tahi te x+2 me te x+12.
x<-12
Te otinga e whakaea i ngā koreōrite e rua ko x<-12.
x+12>0 x+2>0
Whakaarohia te tauira ina he tōrunga tahi te x+2 me te x+12.
x>-2
Te otinga e whakaea i ngā koreōrite e rua ko x>-2.
x<-12\text{; }x>-2
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.