Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

13x-36-x^{2}=3x
Whakamahia te āhuatanga tuaritanga hei whakarea te 9-x ki te x-4 ka whakakotahi i ngā kupu rite.
13x-36-x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
10x-36-x^{2}=0
Pahekotia te 13x me -3x, ka 10x.
-x^{2}+10x-36=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 10 mō b, me -36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
Pūrua 10.
x=\frac{-10±\sqrt{100+4\left(-36\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-10±\sqrt{100-144}}{2\left(-1\right)}
Whakareatia 4 ki te -36.
x=\frac{-10±\sqrt{-44}}{2\left(-1\right)}
Tāpiri 100 ki te -144.
x=\frac{-10±2\sqrt{11}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -44.
x=\frac{-10±2\sqrt{11}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{-10+2\sqrt{11}i}{-2}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{11}i}{-2} ina he tāpiri te ±. Tāpiri -10 ki te 2i\sqrt{11}.
x=-\sqrt{11}i+5
Whakawehe -10+2i\sqrt{11} ki te -2.
x=\frac{-2\sqrt{11}i-10}{-2}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{11}i}{-2} ina he tango te ±. Tango 2i\sqrt{11} mai i -10.
x=5+\sqrt{11}i
Whakawehe -10-2i\sqrt{11} ki te -2.
x=-\sqrt{11}i+5 x=5+\sqrt{11}i
Kua oti te whārite te whakatau.
13x-36-x^{2}=3x
Whakamahia te āhuatanga tuaritanga hei whakarea te 9-x ki te x-4 ka whakakotahi i ngā kupu rite.
13x-36-x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
10x-36-x^{2}=0
Pahekotia te 13x me -3x, ka 10x.
10x-x^{2}=36
Me tāpiri te 36 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-x^{2}+10x=36
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+10x}{-1}=\frac{36}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{10}{-1}x=\frac{36}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-10x=\frac{36}{-1}
Whakawehe 10 ki te -1.
x^{2}-10x=-36
Whakawehe 36 ki te -1.
x^{2}-10x+\left(-5\right)^{2}=-36+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-10x+25=-36+25
Pūrua -5.
x^{2}-10x+25=-11
Tāpiri -36 ki te 25.
\left(x-5\right)^{2}=-11
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-11}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=\sqrt{11}i x-5=-\sqrt{11}i
Whakarūnātia.
x=5+\sqrt{11}i x=-\sqrt{11}i+5
Me tāpiri 5 ki ngā taha e rua o te whārite.