Whakaoti mō x
x\in \left(\frac{9-2\sqrt{2}}{5},\frac{2\sqrt{2}+9}{5}\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
81-90x+25x^{2}+2\left(9-5x\right)^{2}-24<0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(9-5x\right)^{2}.
81-90x+25x^{2}+2\left(81-90x+25x^{2}\right)-24<0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(9-5x\right)^{2}.
81-90x+25x^{2}+162-180x+50x^{2}-24<0
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 81-90x+25x^{2}.
243-90x+25x^{2}-180x+50x^{2}-24<0
Tāpirihia te 81 ki te 162, ka 243.
243-270x+25x^{2}+50x^{2}-24<0
Pahekotia te -90x me -180x, ka -270x.
243-270x+75x^{2}-24<0
Pahekotia te 25x^{2} me 50x^{2}, ka 75x^{2}.
219-270x+75x^{2}<0
Tangohia te 24 i te 243, ka 219.
219-270x+75x^{2}=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-270\right)±\sqrt{\left(-270\right)^{2}-4\times 75\times 219}}{2\times 75}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 75 mō te a, te -270 mō te b, me te 219 mō te c i te ture pūrua.
x=\frac{270±60\sqrt{2}}{150}
Mahia ngā tātaitai.
x=\frac{2\sqrt{2}+9}{5} x=\frac{9-2\sqrt{2}}{5}
Whakaotia te whārite x=\frac{270±60\sqrt{2}}{150} ina he tōrunga te ±, ina he tōraro te ±.
75\left(x-\frac{2\sqrt{2}+9}{5}\right)\left(x-\frac{9-2\sqrt{2}}{5}\right)<0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\frac{2\sqrt{2}+9}{5}>0 x-\frac{9-2\sqrt{2}}{5}<0
Kia tōraro te otinga, me tauaro rawa ngā tohu o te x-\frac{2\sqrt{2}+9}{5} me te x-\frac{9-2\sqrt{2}}{5}. Whakaarohia te tauira ina he tōrunga te x-\frac{2\sqrt{2}+9}{5} he tōraro te x-\frac{9-2\sqrt{2}}{5}.
x\in \emptyset
He teka tēnei mō tētahi x ahakoa.
x-\frac{9-2\sqrt{2}}{5}>0 x-\frac{2\sqrt{2}+9}{5}<0
Whakaarohia te tauira ina he tōrunga te x-\frac{9-2\sqrt{2}}{5} he tōraro te x-\frac{2\sqrt{2}+9}{5}.
x\in \left(\frac{9-2\sqrt{2}}{5},\frac{2\sqrt{2}+9}{5}\right)
Te otinga e whakaea i ngā koreōrite e rua ko x\in \left(\frac{9-2\sqrt{2}}{5},\frac{2\sqrt{2}+9}{5}\right).
x\in \left(\frac{9-2\sqrt{2}}{5},\frac{2\sqrt{2}+9}{5}\right)
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}