Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

11x^{2}-2x+1+5x-8
Pahekotia te 8x^{2} me 3x^{2}, ka 11x^{2}.
11x^{2}+3x+1-8
Pahekotia te -2x me 5x, ka 3x.
11x^{2}+3x-7
Tangohia te 8 i te 1, ka -7.
factor(11x^{2}-2x+1+5x-8)
Pahekotia te 8x^{2} me 3x^{2}, ka 11x^{2}.
factor(11x^{2}+3x+1-8)
Pahekotia te -2x me 5x, ka 3x.
factor(11x^{2}+3x-7)
Tangohia te 8 i te 1, ka -7.
11x^{2}+3x-7=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 11\left(-7\right)}}{2\times 11}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{9-4\times 11\left(-7\right)}}{2\times 11}
Pūrua 3.
x=\frac{-3±\sqrt{9-44\left(-7\right)}}{2\times 11}
Whakareatia -4 ki te 11.
x=\frac{-3±\sqrt{9+308}}{2\times 11}
Whakareatia -44 ki te -7.
x=\frac{-3±\sqrt{317}}{2\times 11}
Tāpiri 9 ki te 308.
x=\frac{-3±\sqrt{317}}{22}
Whakareatia 2 ki te 11.
x=\frac{\sqrt{317}-3}{22}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{317}}{22} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{317}.
x=\frac{-\sqrt{317}-3}{22}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{317}}{22} ina he tango te ±. Tango \sqrt{317} mai i -3.
11x^{2}+3x-7=11\left(x-\frac{\sqrt{317}-3}{22}\right)\left(x-\frac{-\sqrt{317}-3}{22}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-3+\sqrt{317}}{22} mō te x_{1} me te \frac{-3-\sqrt{317}}{22} mō te x_{2}.