Whakaoti mō x
x=-\frac{3}{8}=-0.375
Graph
Tohaina
Kua tāruatia ki te papatopenga
64x^{2}+48x+9=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(8x+3\right)^{2}.
a+b=48 ab=64\times 9=576
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 64x^{2}+ax+bx+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,576 2,288 3,192 4,144 6,96 8,72 9,64 12,48 16,36 18,32 24,24
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 576.
1+576=577 2+288=290 3+192=195 4+144=148 6+96=102 8+72=80 9+64=73 12+48=60 16+36=52 18+32=50 24+24=48
Tātaihia te tapeke mō ia takirua.
a=24 b=24
Ko te otinga te takirua ka hoatu i te tapeke 48.
\left(64x^{2}+24x\right)+\left(24x+9\right)
Tuhia anō te 64x^{2}+48x+9 hei \left(64x^{2}+24x\right)+\left(24x+9\right).
8x\left(8x+3\right)+3\left(8x+3\right)
Tauwehea te 8x i te tuatahi me te 3 i te rōpū tuarua.
\left(8x+3\right)\left(8x+3\right)
Whakatauwehea atu te kīanga pātahi 8x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(8x+3\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=-\frac{3}{8}
Hei kimi i te otinga whārite, whakaotia te 8x+3=0.
64x^{2}+48x+9=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(8x+3\right)^{2}.
x=\frac{-48±\sqrt{48^{2}-4\times 64\times 9}}{2\times 64}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 64 mō a, 48 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\times 64\times 9}}{2\times 64}
Pūrua 48.
x=\frac{-48±\sqrt{2304-256\times 9}}{2\times 64}
Whakareatia -4 ki te 64.
x=\frac{-48±\sqrt{2304-2304}}{2\times 64}
Whakareatia -256 ki te 9.
x=\frac{-48±\sqrt{0}}{2\times 64}
Tāpiri 2304 ki te -2304.
x=-\frac{48}{2\times 64}
Tuhia te pūtakerua o te 0.
x=-\frac{48}{128}
Whakareatia 2 ki te 64.
x=-\frac{3}{8}
Whakahekea te hautanga \frac{-48}{128} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
64x^{2}+48x+9=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(8x+3\right)^{2}.
64x^{2}+48x=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{64x^{2}+48x}{64}=-\frac{9}{64}
Whakawehea ngā taha e rua ki te 64.
x^{2}+\frac{48}{64}x=-\frac{9}{64}
Mā te whakawehe ki te 64 ka wetekia te whakareanga ki te 64.
x^{2}+\frac{3}{4}x=-\frac{9}{64}
Whakahekea te hautanga \frac{48}{64} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=-\frac{9}{64}+\left(\frac{3}{8}\right)^{2}
Whakawehea te \frac{3}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{8}. Nā, tāpiria te pūrua o te \frac{3}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{-9+9}{64}
Pūruatia \frac{3}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{4}x+\frac{9}{64}=0
Tāpiri -\frac{9}{64} ki te \frac{9}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{8}\right)^{2}=0
Tauwehea x^{2}+\frac{3}{4}x+\frac{9}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{8}=0 x+\frac{3}{8}=0
Whakarūnātia.
x=-\frac{3}{8} x=-\frac{3}{8}
Me tango \frac{3}{8} mai i ngā taha e rua o te whārite.
x=-\frac{3}{8}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}