Aromātai
9h^{3}+2h^{2}+10h+5
Kimi Pārōnaki e ai ki h
27h^{2}+4h+10
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( 8 h ^ { 3 } + 2 h ^ { 2 } + 3 h + 5 ) + ( h ^ { 3 } + 7 h )
Tohaina
Kua tāruatia ki te papatopenga
9h^{3}+2h^{2}+3h+5+7h
Pahekotia te 8h^{3} me h^{3}, ka 9h^{3}.
9h^{3}+2h^{2}+10h+5
Pahekotia te 3h me 7h, ka 10h.
\frac{\mathrm{d}}{\mathrm{d}h}(9h^{3}+2h^{2}+3h+5+7h)
Pahekotia te 8h^{3} me h^{3}, ka 9h^{3}.
\frac{\mathrm{d}}{\mathrm{d}h}(9h^{3}+2h^{2}+10h+5)
Pahekotia te 3h me 7h, ka 10h.
3\times 9h^{3-1}+2\times 2h^{2-1}+10h^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
27h^{3-1}+2\times 2h^{2-1}+10h^{1-1}
Whakareatia 3 ki te 9.
27h^{2}+2\times 2h^{2-1}+10h^{1-1}
Tango 1 mai i 3.
27h^{2}+4h^{2-1}+10h^{1-1}
Whakareatia 2 ki te 2.
27h^{2}+4h^{1}+10h^{1-1}
Tango 1 mai i 2.
27h^{2}+4h^{1}+10h^{0}
Tango 1 mai i 1.
27h^{2}+4h+10h^{0}
Mō tētahi kupu t, t^{1}=t.
27h^{2}+4h+10\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
27h^{2}+4h+10
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}