Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki h
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9h^{3}+2h^{2}+3h+5+7h
Pahekotia te 8h^{3} me h^{3}, ka 9h^{3}.
9h^{3}+2h^{2}+10h+5
Pahekotia te 3h me 7h, ka 10h.
\frac{\mathrm{d}}{\mathrm{d}h}(9h^{3}+2h^{2}+3h+5+7h)
Pahekotia te 8h^{3} me h^{3}, ka 9h^{3}.
\frac{\mathrm{d}}{\mathrm{d}h}(9h^{3}+2h^{2}+10h+5)
Pahekotia te 3h me 7h, ka 10h.
3\times 9h^{3-1}+2\times 2h^{2-1}+10h^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
27h^{3-1}+2\times 2h^{2-1}+10h^{1-1}
Whakareatia 3 ki te 9.
27h^{2}+2\times 2h^{2-1}+10h^{1-1}
Tango 1 mai i 3.
27h^{2}+4h^{2-1}+10h^{1-1}
Whakareatia 2 ki te 2.
27h^{2}+4h^{1}+10h^{1-1}
Tango 1 mai i 2.
27h^{2}+4h^{1}+10h^{0}
Tango 1 mai i 1.
27h^{2}+4h+10h^{0}
Mō tētahi kupu t, t^{1}=t.
27h^{2}+4h+10\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
27h^{2}+4h+10
Mō tētahi kupu t, t\times 1=t me 1t=t.