Aromātai
\frac{72}{5}=14.4
Tauwehe
\frac{2 ^ {3} \cdot 3 ^ {2}}{5} = 14\frac{2}{5} = 14.4
Tohaina
Kua tāruatia ki te papatopenga
\frac{48}{\frac{3\times 3+1}{3}}
Whakareatia te 8 ki te 6, ka 48.
\frac{48}{\frac{9+1}{3}}
Whakareatia te 3 ki te 3, ka 9.
\frac{48}{\frac{10}{3}}
Tāpirihia te 9 ki te 1, ka 10.
48\times \frac{3}{10}
Whakawehe 48 ki te \frac{10}{3} mā te whakarea 48 ki te tau huripoki o \frac{10}{3}.
\frac{48\times 3}{10}
Tuhia te 48\times \frac{3}{10} hei hautanga kotahi.
\frac{144}{10}
Whakareatia te 48 ki te 3, ka 144.
\frac{72}{5}
Whakahekea te hautanga \frac{144}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}