Aromātai
32-4i
Wāhi Tūturu
32
Tohaina
Kua tāruatia ki te papatopenga
8\times 3+8\times \left(-2i\right)+4i\times 3+4\left(-2\right)i^{2}
Me whakarea ngā tau matatini 8+4i me 3-2i pēnā i te whakarea huarua.
8\times 3+8\times \left(-2i\right)+4i\times 3+4\left(-2\right)\left(-1\right)
Hei tōna tikanga, ko te i^{2} ko -1.
24-16i+12i+8
Mahia ngā whakarea.
24+8+\left(-16+12\right)i
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa.
32-4i
Mahia ngā tāpiri.
Re(8\times 3+8\times \left(-2i\right)+4i\times 3+4\left(-2\right)i^{2})
Me whakarea ngā tau matatini 8+4i me 3-2i pēnā i te whakarea huarua.
Re(8\times 3+8\times \left(-2i\right)+4i\times 3+4\left(-2\right)\left(-1\right))
Hei tōna tikanga, ko te i^{2} ko -1.
Re(24-16i+12i+8)
Mahia ngā whakarea i roto o 8\times 3+8\times \left(-2i\right)+4i\times 3+4\left(-2\right)\left(-1\right).
Re(24+8+\left(-16+12\right)i)
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 24-16i+12i+8.
Re(32-4i)
Mahia ngā tāpiri i roto o 24+8+\left(-16+12\right)i.
32
Ko te wāhi tūturu o 32-4i ko 32.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}