Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8^{\frac{1}{3}}\left(x^{6}\right)^{\frac{1}{3}}
Whakarohaina te \left(8x^{6}\right)^{\frac{1}{3}}.
8^{\frac{1}{3}}x^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te \frac{1}{3} kia riro ai te 2.
2x^{2}
Tātaihia te 8 mā te pū o \frac{1}{3}, kia riro ko 2.
\frac{1}{3}\times \left(8x^{6}\right)^{\frac{1}{3}-1}\frac{\mathrm{d}}{\mathrm{d}x}(8x^{6})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{1}{3}\times \left(8x^{6}\right)^{-\frac{2}{3}}\times 6\times 8x^{6-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
16x^{5}\times \left(8x^{6}\right)^{-\frac{2}{3}}
Whakarūnātia.