Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

608+120x-8x^{2}=1080
Whakamahia te āhuatanga tuaritanga hei whakarea te 76-4x ki te 8+2x ka whakakotahi i ngā kupu rite.
608+120x-8x^{2}-1080=0
Tangohia te 1080 mai i ngā taha e rua.
-472+120x-8x^{2}=0
Tangohia te 1080 i te 608, ka -472.
-8x^{2}+120x-472=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-120±\sqrt{120^{2}-4\left(-8\right)\left(-472\right)}}{2\left(-8\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -8 mō a, 120 mō b, me -472 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-120±\sqrt{14400-4\left(-8\right)\left(-472\right)}}{2\left(-8\right)}
Pūrua 120.
x=\frac{-120±\sqrt{14400+32\left(-472\right)}}{2\left(-8\right)}
Whakareatia -4 ki te -8.
x=\frac{-120±\sqrt{14400-15104}}{2\left(-8\right)}
Whakareatia 32 ki te -472.
x=\frac{-120±\sqrt{-704}}{2\left(-8\right)}
Tāpiri 14400 ki te -15104.
x=\frac{-120±8\sqrt{11}i}{2\left(-8\right)}
Tuhia te pūtakerua o te -704.
x=\frac{-120±8\sqrt{11}i}{-16}
Whakareatia 2 ki te -8.
x=\frac{-120+8\sqrt{11}i}{-16}
Nā, me whakaoti te whārite x=\frac{-120±8\sqrt{11}i}{-16} ina he tāpiri te ±. Tāpiri -120 ki te 8i\sqrt{11}.
x=\frac{-\sqrt{11}i+15}{2}
Whakawehe -120+8i\sqrt{11} ki te -16.
x=\frac{-8\sqrt{11}i-120}{-16}
Nā, me whakaoti te whārite x=\frac{-120±8\sqrt{11}i}{-16} ina he tango te ±. Tango 8i\sqrt{11} mai i -120.
x=\frac{15+\sqrt{11}i}{2}
Whakawehe -120-8i\sqrt{11} ki te -16.
x=\frac{-\sqrt{11}i+15}{2} x=\frac{15+\sqrt{11}i}{2}
Kua oti te whārite te whakatau.
608+120x-8x^{2}=1080
Whakamahia te āhuatanga tuaritanga hei whakarea te 76-4x ki te 8+2x ka whakakotahi i ngā kupu rite.
120x-8x^{2}=1080-608
Tangohia te 608 mai i ngā taha e rua.
120x-8x^{2}=472
Tangohia te 608 i te 1080, ka 472.
-8x^{2}+120x=472
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-8x^{2}+120x}{-8}=\frac{472}{-8}
Whakawehea ngā taha e rua ki te -8.
x^{2}+\frac{120}{-8}x=\frac{472}{-8}
Mā te whakawehe ki te -8 ka wetekia te whakareanga ki te -8.
x^{2}-15x=\frac{472}{-8}
Whakawehe 120 ki te -8.
x^{2}-15x=-59
Whakawehe 472 ki te -8.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-59+\left(-\frac{15}{2}\right)^{2}
Whakawehea te -15, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{2}. Nā, tāpiria te pūrua o te -\frac{15}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-15x+\frac{225}{4}=-59+\frac{225}{4}
Pūruatia -\frac{15}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-15x+\frac{225}{4}=-\frac{11}{4}
Tāpiri -59 ki te \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=-\frac{11}{4}
Tauwehea x^{2}-15x+\frac{225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{-\frac{11}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{2}=\frac{\sqrt{11}i}{2} x-\frac{15}{2}=-\frac{\sqrt{11}i}{2}
Whakarūnātia.
x=\frac{15+\sqrt{11}i}{2} x=\frac{-\sqrt{11}i+15}{2}
Me tāpiri \frac{15}{2} ki ngā taha e rua o te whārite.